IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1001067.html
   My bibliography  Save this article

Impact of Sarcoplasmic Reticulum Calcium Release on Calcium Dynamics and Action Potential Morphology in Human Atrial Myocytes: A Computational Study

Author

Listed:
  • Jussi T Koivumäki
  • Topi Korhonen
  • Pasi Tavi

Abstract

Electrophysiological studies of the human heart face the fundamental challenge that experimental data can be acquired only from patients with underlying heart disease. Regarding human atria, there exist sizable gaps in the understanding of the functional role of cellular Ca2+ dynamics, which differ crucially from that of ventricular cells, in the modulation of excitation-contraction coupling. Accordingly, the objective of this study was to develop a mathematical model of the human atrial myocyte that, in addition to the sarcolemmal (SL) ion currents, accounts for the heterogeneity of intracellular Ca2+ dynamics emerging from a structurally detailed sarcoplasmic reticulum (SR). Based on the simulation results, our model convincingly reproduces the principal characteristics of Ca2+ dynamics: 1) the biphasic increment during the upstroke of the Ca2+ transient resulting from the delay between the peripheral and central SR Ca2+ release, and 2) the relative contribution of SL Ca2+ current and SR Ca2+ release to the Ca2+ transient. In line with experimental findings, the model also replicates the strong impact of intracellular Ca2+ dynamics on the shape of the action potential. The simulation results suggest that the peripheral SR Ca2+ release sites define the interface between Ca2+ and AP, whereas the central release sites are important for the fire-diffuse-fire propagation of Ca2+ diffusion. Furthermore, our analysis predicts that the modulation of the action potential duration due to increasing heart rate is largely mediated by changes in the intracellular Na+ concentration. Finally, the results indicate that the SR Ca2+ release is a strong modulator of AP duration and, consequently, myocyte refractoriness/excitability. We conclude that the developed model is robust and reproduces many fundamental aspects of the tight coupling between SL ion currents and intracellular Ca2+ signaling. Thus, the model provides a useful framework for future studies of excitation-contraction coupling in human atrial myocytes.Author Summary: In the human heart, the contraction of atrial and ventricular muscle cells is based largely on common mechanisms. There is, however, a fundamental difference in the cellular calcium dynamics that underlie the contractile function. Here, we have developed a computational model of the human atrial cell that convincingly reproduces the experimentally observed characteristics of the electrical activity and the cyclic fluctuations of the intracellular calcium concentration. With the model, we evaluate the relative roles of the most important cellular calcium transport mechanisms and their impact on the electrical behavior of the cell. Our simulations predict that the amount of calcium released from the cellular stores during each electrical cycle crucially regulates the excitability of the human atrial cell. Furthermore, the results indicate that the cellular sodium accumulation related to faster heart rates is one of the main mechanisms driving the adaptation of cardiac electrical activity. Finally, we conclude that the presented model also provides a useful framework for future studies of human atrial cells.

Suggested Citation

  • Jussi T Koivumäki & Topi Korhonen & Pasi Tavi, 2011. "Impact of Sarcoplasmic Reticulum Calcium Release on Calcium Dynamics and Action Potential Morphology in Human Atrial Myocytes: A Computational Study," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-14, January.
  • Handle: RePEc:plo:pcbi00:1001067
    DOI: 10.1371/journal.pcbi.1001067
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1001067
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1001067&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1001067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1001067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.