Sparsity and Compressed Coding in Sensory Systems
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pcbi.1003793
Download full text from publisher
References listed on IDEAS
- Srdjan Ostojic & Nicolas Brunel, 2011. "From Spiking Neuron Models to Linear-Nonlinear Models," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-16, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yuxin Zhang & Yifei Yang & Xiaosi Li & Zijing Yuan & Yuki Todo & Haichuan Yang, 2023. "A Dendritic Neuron Model Optimized by Meta-Heuristics with a Power-Law-Distributed Population Interaction Network for Financial Time-Series Forecasting," Mathematics, MDPI, vol. 11(5), pages 1-20, March.
- Omri Harish & David Hansel, 2015. "Asynchronous Rate Chaos in Spiking Neuronal Circuits," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-38, July.
- Pengcheng Zhou & Shawn D Burton & Adam C Snyder & Matthew A Smith & Nathaniel N Urban & Robert E Kass, 2015. "Establishing a Statistical Link between Network Oscillations and Neural Synchrony," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-25, October.
- Richard Naud & Wulfram Gerstner, 2012. "Coding and Decoding with Adapting Neurons: A Population Approach to the Peri-Stimulus Time Histogram," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-14, October.
- Skander Mensi & Olivier Hagens & Wulfram Gerstner & Christian Pozzorini, 2016. "Enhanced Sensitivity to Rapid Input Fluctuations by Nonlinear Threshold Dynamics in Neocortical Pyramidal Neurons," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-38, February.
- Michelle F Craft & Andrea K Barreiro & Shree Hari Gautam & Woodrow L Shew & Cheng Ly, 2021. "Differences in olfactory bulb mitral cell spiking with ortho- and retronasal stimulation revealed by data-driven models," PLOS Computational Biology, Public Library of Science, vol. 17(9), pages 1-28, September.
- James Trousdale & Yu Hu & Eric Shea-Brown & Krešimir Josić, 2012. "Impact of Network Structure and Cellular Response on Spike Time Correlations," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-15, March.
- Julian Rossbroich & Daniel Trotter & John Beninger & Katalin Tóth & Richard Naud, 2021. "Linear-nonlinear cascades capture synaptic dynamics," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-27, March.
- Evan S Schaffer & Srdjan Ostojic & L F Abbott, 2013. "A Complex-Valued Firing-Rate Model That Approximates the Dynamics of Spiking Networks," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-11, October.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003793. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.