IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003721.html
   My bibliography  Save this article

Correlated Inter-Domain Motions in Adenylate Kinase

Author

Listed:
  • Santiago Esteban-Martín
  • Robert Bryn Fenwick
  • Jörgen Ådén
  • Benjamin Cossins
  • Carlos W Bertoncini
  • Victor Guallar
  • Magnus Wolf-Watz
  • Xavier Salvatella

Abstract

Correlated inter-domain motions in proteins can mediate fundamental biochemical processes such as signal transduction and allostery. Here we characterize at structural level the inter-domain coupling in a multidomain enzyme, Adenylate Kinase (AK), using computational methods that exploit the shape information encoded in residual dipolar couplings (RDCs) measured under steric alignment by nuclear magnetic resonance (NMR). We find experimental evidence for a multi-state equilibrium distribution along the opening/closing pathway of Adenylate Kinase, previously proposed from computational work, in which inter-domain interactions disfavour states where only the AMP binding domain is closed. In summary, we provide a robust experimental technique for study of allosteric regulation in AK and other enzymes.Author Summary: Most proteins contain several domains, and inter-domain motions play important roles in their biological functions. Describing the various inter-domain orientations that multi-domain proteins adopt at equilibrium is challenging, but key for understanding the relationship between protein structure and function. When more than two domains are present in a protein, correlated domain motions can be of fundamental importance for biological function. This type of behaviour is typical of molecular machines but is extremely challenging to characterize both from experimental and theoretical viewpoints. In this paper, we present a hybrid experimental/computational approach to address this problem by exploiting the information on molecular shape contained in nuclear magnetic resonance experiments to determine accurate conformation ensembles for the multi-domain enzyme adenylate kinase with help of advanced simulation methods.

Suggested Citation

  • Santiago Esteban-Martín & Robert Bryn Fenwick & Jörgen Ådén & Benjamin Cossins & Carlos W Bertoncini & Victor Guallar & Magnus Wolf-Watz & Xavier Salvatella, 2014. "Correlated Inter-Domain Motions in Adenylate Kinase," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-7, July.
  • Handle: RePEc:plo:pcbi00:1003721
    DOI: 10.1371/journal.pcbi.1003721
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003721
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003721&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003721?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Katherine A. Henzler-Wildman & Vu Thai & Ming Lei & Maria Ott & Magnus Wolf-Watz & Tim Fenn & Ed Pozharski & Mark A. Wilson & Gregory A. Petsko & Martin Karplus & Christian G. Hübner & Dorothee Kern, 2007. "Intrinsic motions along an enzymatic reaction trajectory," Nature, Nature, vol. 450(7171), pages 838-844, December.
    2. Ulrika Olsson & Magnus Wolf-Watz, 2010. "Overlap between folding and functional energy landscapes for adenylate kinase conformational change," Nature Communications, Nature, vol. 1(1), pages 1-8, December.
    3. Elan Z. Eisenmesser & Oscar Millet & Wladimir Labeikovsky & Dmitry M. Korzhnev & Magnus Wolf-Watz & Daryl A. Bosco & Jack J. Skalicky & Lewis E. Kay & Dorothee Kern, 2005. "Intrinsic dynamics of an enzyme underlies catalysis," Nature, Nature, vol. 438(7064), pages 117-121, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gregory D Friedland & Nils-Alexander Lakomek & Christian Griesinger & Jens Meiler & Tanja Kortemme, 2009. "A Correspondence Between Solution-State Dynamics of an Individual Protein and the Sequence and Conformational Diversity of its Family," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-16, May.
    2. Fabian Paul & Thomas R Weikl, 2016. "How to Distinguish Conformational Selection and Induced Fit Based on Chemical Relaxation Rates," PLOS Computational Biology, Public Library of Science, vol. 12(9), pages 1-17, September.
    3. Nicolas Palopoli & Alexander Miguel Monzon & Gustavo Parisi & Maria Silvina Fornasari, 2016. "Addressing the Role of Conformational Diversity in Protein Structure Prediction," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-14, May.
    4. Dilek Eren & Burak Alakent, 2013. "Frequency Response of a Protein to Local Conformational Perturbations," PLOS Computational Biology, Public Library of Science, vol. 9(9), pages 1-15, September.
    5. Timothy R Lezon & Ivet Bahar, 2010. "Using Entropy Maximization to Understand the Determinants of Structural Dynamics beyond Native Contact Topology," PLOS Computational Biology, Public Library of Science, vol. 6(6), pages 1-12, June.
    6. Giacomo Janson & Gilberto Valdes-Garcia & Lim Heo & Michael Feig, 2023. "Direct generation of protein conformational ensembles via machine learning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Robert Peach & Alexis Arnaudon & Mauricio Barahona, 2022. "Relative, local and global dimension in complex networks," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Maciej Majewski & Adrià Pérez & Philipp Thölke & Stefan Doerr & Nicholas E. Charron & Toni Giorgino & Brooke E. Husic & Cecilia Clementi & Frank Noé & Gianni Fabritiis, 2023. "Machine learning coarse-grained potentials of protein thermodynamics," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Sebastian L B König & Mélodie Hadzic & Erica Fiorini & Richard Börner & Danny Kowerko & Wolf U Blanckenhorn & Roland K O Sigel, 2013. "BOBA FRET: Bootstrap-Based Analysis of Single-Molecule FRET Data," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-17, December.
    10. Torgeir R Hvidsten & Astrid Lægreid & Andriy Kryshtafovych & Gunnar Andersson & Krzysztof Fidelis & Jan Komorowski, 2009. "A Comprehensive Analysis of the Structure-Function Relationship in Proteins Based on Local Structure Similarity," PLOS ONE, Public Library of Science, vol. 4(7), pages 1-9, July.
    11. Xiang Zhang & Jingjing Tang & Lingling Wang & Chuan Wang & Lei Chen & Xinqing Chen & Jieshu Qian & Bingcai Pan, 2024. "Nanoconfinement-triggered oligomerization pathway for efficient removal of phenolic pollutants via a Fenton-like reaction," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Diego F. Gauto & Pavel Macek & Duccio Malinverni & Hugo Fraga & Matteo Paloni & Iva Sučec & Audrey Hessel & Juan Pablo Bustamante & Alessandro Barducci & Paul Schanda, 2022. "Functional control of a 0.5 MDa TET aminopeptidase by a flexible loop revealed by MAS NMR," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Dong Long & Rafael Brüschweiler, 2011. "In Silico Elucidation of the Recognition Dynamics of Ubiquitin," PLOS Computational Biology, Public Library of Science, vol. 7(4), pages 1-9, April.
    14. Kai Wang & Shiyang Long & Pu Tian, 2015. "Hierarchical Conformational Analysis of Native Lysozyme Based on Sub-Millisecond Molecular Dynamics Simulations," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-17, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.