IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003248.html
   My bibliography  Save this article

The Influence of Synaptic Weight Distribution on Neuronal Population Dynamics

Author

Listed:
  • Ramakrishnan Iyer
  • Vilas Menon
  • Michael Buice
  • Christof Koch
  • Stefan Mihalas

Abstract

The manner in which different distributions of synaptic weights onto cortical neurons shape their spiking activity remains open. To characterize a homogeneous neuronal population, we use the master equation for generalized leaky integrate-and-fire neurons with shot-noise synapses. We develop fast semi-analytic numerical methods to solve this equation for either current or conductance synapses, with and without synaptic depression. We show that its solutions match simulations of equivalent neuronal networks better than those of the Fokker-Planck equation and we compute bounds on the network response to non-instantaneous synapses. We apply these methods to study different synaptic weight distributions in feed-forward networks. We characterize the synaptic amplitude distributions using a set of measures, called tail weight numbers, designed to quantify the preponderance of very strong synapses. Even if synaptic amplitude distributions are equated for both the total current and average synaptic weight, distributions with sparse but strong synapses produce higher responses for small inputs, leading to a larger operating range. Furthermore, despite their small number, such synapses enable the network to respond faster and with more stability in the face of external fluctuations.Author Summary: Neurons communicate via action potentials. Typically, depolarizations caused by presynaptic firing are small, such that many synaptic inputs are necessary to exceed the firing threshold. This is the assumption made by standard mathematical approaches such as the Fokker-Planck formalism. However, in some cases the synaptic weight can be large. On occasion, a single input is capable of exceeding threshold. Although this phenomenon can be studied with computational simulations, these can be impractical for large scale brain simulations or suffer from the problem of insufficient knowledge of the relevant parameters. Improving upon the standard Fokker-Planck approach, we develop a hybrid approach combining semi-analytical with computational methods into an efficient technique for analyzing the effect that rare and large synaptic weights can have on neural network activity. Our method has both neurobiological as well as methodological implications. Sparse but powerful synapses provide networks with response celerity, enhanced bandwidth and stability, even when the networks are matched for average input. We introduce a measure characterizing this response. Furthermore, our method can characterize the sub-threshold membrane potential distribution and spiking statistics of very large networks of distinct but homogeneous populations of 10s to 100s of distinct neuronal cell types throughout the brain.

Suggested Citation

  • Ramakrishnan Iyer & Vilas Menon & Michael Buice & Christof Koch & Stefan Mihalas, 2013. "The Influence of Synaptic Weight Distribution on Neuronal Population Dynamics," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-16, October.
  • Handle: RePEc:plo:pcbi00:1003248
    DOI: 10.1371/journal.pcbi.1003248
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003248
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003248&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003248?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Moritz Helias & Moritz Deger & Stefan Rotter & Markus Diesmann, 2010. "Instantaneous Non-Linear Processing by Pulse-Coupled Threshold Units," PLOS Computational Biology, Public Library of Science, vol. 6(9), pages 1-10, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriel Koch Ocker & Krešimir Josić & Eric Shea-Brown & Michael A Buice, 2017. "Linking structure and activity in nonlinear spiking networks," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-47, June.
    2. Nicholas Cain & Ramakrishnan Iyer & Christof Koch & Stefan Mihalas, 2016. "The Computational Properties of a Simplified Cortical Column Model," PLOS Computational Biology, Public Library of Science, vol. 12(9), pages 1-18, September.
    3. Marc de Kamps & Mikkel Lepperød & Yi Ming Lai, 2019. "Computational geometry for modeling neural populations: From visualization to simulation," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-41, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tom Tetzlaff & Moritz Helias & Gaute T Einevoll & Markus Diesmann, 2012. "Decorrelation of Neural-Network Activity by Inhibitory Feedback," PLOS Computational Biology, Public Library of Science, vol. 8(8), pages 1-29, August.
    2. Moritz Deger & Moritz Helias & Stefan Rotter & Markus Diesmann, 2012. "Spike-Timing Dependence of Structural Plasticity Explains Cooperative Synapse Formation in the Neocortex," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-13, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.