IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005045.html
   My bibliography  Save this article

The Computational Properties of a Simplified Cortical Column Model

Author

Listed:
  • Nicholas Cain
  • Ramakrishnan Iyer
  • Christof Koch
  • Stefan Mihalas

Abstract

The mammalian neocortex has a repetitious, laminar structure and performs functions integral to higher cognitive processes, including sensory perception, memory, and coordinated motor output. What computations does this circuitry subserve that link these unique structural elements to their function? Potjans and Diesmann (2014) parameterized a four-layer, two cell type (i.e. excitatory and inhibitory) model of a cortical column with homogeneous populations and cell type dependent connection probabilities. We implement a version of their model using a displacement integro-partial differential equation (DiPDE) population density model. This approach, exact in the limit of large homogeneous populations, provides a fast numerical method to solve equations describing the full probability density distribution of neuronal membrane potentials. It lends itself to quickly analyzing the mean response properties of population-scale firing rate dynamics. We use this strategy to examine the input-output relationship of the Potjans and Diesmann cortical column model to understand its computational properties. When inputs are constrained to jointly and equally target excitatory and inhibitory neurons, we find a large linear regime where the effect of a multi-layer input signal can be reduced to a linear combination of component signals. One of these, a simple subtractive operation, can act as an error signal passed between hierarchical processing stages.Author Summary: What computations do existing biophysically-plausible models of cortex perform on their inputs, and how do these computations relate to theories of cortical processing? We begin with a computational model of cortical tissue and seek to understand its input/output transformations. Our approach limits confirmation bias, and differs from a more constructionist approach of starting with a computational theory and then creating a model that can implement its necessary features. We here choose a population-level modeling technique that does not sacrifice accuracy, as it well-approximates the mean firing-rate of a population of leaky integrate-and-fire neurons. We extend this approach to simulate recurrently coupled neural populations, and characterize the computational properties of the Potjans and Diesmann cortical column model. We find that this model is capable of computing linear operations and naturally generates a subtraction operation implicated in theories of predictive coding. Although our quantitative findings are restricted to this particular model, we demonstrate that these conclusions are not highly sensitive to the model parameterization.

Suggested Citation

  • Nicholas Cain & Ramakrishnan Iyer & Christof Koch & Stefan Mihalas, 2016. "The Computational Properties of a Simplified Cortical Column Model," PLOS Computational Biology, Public Library of Science, vol. 12(9), pages 1-18, September.
  • Handle: RePEc:plo:pcbi00:1005045
    DOI: 10.1371/journal.pcbi.1005045
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005045
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005045&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ramakrishnan Iyer & Vilas Menon & Michael Buice & Christof Koch & Stefan Mihalas, 2013. "The Influence of Synaptic Weight Distribution on Neuronal Population Dynamics," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marc de Kamps & Mikkel Lepperød & Yi Ming Lai, 2019. "Computational geometry for modeling neural populations: From visualization to simulation," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-41, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc de Kamps & Mikkel Lepperød & Yi Ming Lai, 2019. "Computational geometry for modeling neural populations: From visualization to simulation," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-41, March.
    2. Gabriel Koch Ocker & Krešimir Josić & Eric Shea-Brown & Michael A Buice, 2017. "Linking structure and activity in nonlinear spiking networks," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-47, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.