IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003062.html
   My bibliography  Save this article

Are V1 Simple Cells Optimized for Visual Occlusions? A Comparative Study

Author

Listed:
  • Jörg Bornschein
  • Marc Henniges
  • Jörg Lücke

Abstract

Simple cells in primary visual cortex were famously found to respond to low-level image components such as edges. Sparse coding and independent component analysis (ICA) emerged as the standard computational models for simple cell coding because they linked their receptive fields to the statistics of visual stimuli. However, a salient feature of image statistics, occlusions of image components, is not considered by these models. Here we ask if occlusions have an effect on the predicted shapes of simple cell receptive fields. We use a comparative approach to answer this question and investigate two models for simple cells: a standard linear model and an occlusive model. For both models we simultaneously estimate optimal receptive fields, sparsity and stimulus noise. The two models are identical except for their component superposition assumption. We find the image encoding and receptive fields predicted by the models to differ significantly. While both models predict many Gabor-like fields, the occlusive model predicts a much sparser encoding and high percentages of ‘globular’ receptive fields. This relatively new center-surround type of simple cell response is observed since reverse correlation is used in experimental studies. While high percentages of ‘globular’ fields can be obtained using specific choices of sparsity and overcompleteness in linear sparse coding, no or only low proportions are reported in the vast majority of studies on linear models (including all ICA models). Likewise, for the here investigated linear model and optimal sparsity, only low proportions of ‘globular’ fields are observed. In comparison, the occlusive model robustly infers high proportions and can match the experimentally observed high proportions of ‘globular’ fields well. Our computational study, therefore, suggests that ‘globular’ fields may be evidence for an optimal encoding of visual occlusions in primary visual cortex.Author Summary: The statistics of our visual world is dominated by occlusions. Almost every image processed by our brain consists of mutually occluding objects, animals and plants. Our visual cortex is optimized through evolution and throughout our lifespan for such stimuli. Yet, the standard computational models of primary visual processing do not consider occlusions. In this study, we ask what effects visual occlusions may have on predicted response properties of simple cells which are the first cortical processing units for images. Our results suggest that recently observed differences between experiments and predictions of the standard simple cell models can be attributed to occlusions. The most significant consequence of occlusions is the prediction of many cells sensitive to center-surround stimuli. Experimentally, large quantities of such cells are observed since new techniques (reverse correlation) are used. Without occlusions, they are only obtained for specific settings and none of the seminal studies (sparse coding, ICA) predicted such fields. In contrast, the new type of response naturally emerges as soon as occlusions are considered. In comparison with recent in vivo experiments we find that occlusive models are consistent with the high percentages of center-surround simple cells observed in macaque monkeys, ferrets and mice.

Suggested Citation

  • Jörg Bornschein & Marc Henniges & Jörg Lücke, 2013. "Are V1 Simple Cells Optimized for Visual Occlusions? A Comparative Study," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-16, June.
  • Handle: RePEc:plo:pcbi00:1003062
    DOI: 10.1371/journal.pcbi.1003062
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003062
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003062&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cristina Savin & Prashant Joshi & Jochen Triesch, 2010. "Independent Component Analysis in Spiking Neurons," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-10, April.
    2. Lars Buesing & Johannes Bill & Bernhard Nessler & Wolfgang Maass, 2011. "Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons," PLOS Computational Biology, Public Library of Science, vol. 7(11), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernhard Nessler & Michael Pfeiffer & Lars Buesing & Wolfgang Maass, 2013. "Bayesian Computation Emerges in Generic Cortical Microcircuits through Spike-Timing-Dependent Plasticity," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-30, April.
    2. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Yang Qi & Pulin Gong, 2022. "Fractional neural sampling as a theory of spatiotemporal probabilistic computations in neural circuits," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Lieder, Falk & Griffiths, Tom & Hsu, Ming, 2016. "Over-representation of extreme events in decision-making reflects rational use of cognitive resources," OSF Preprints kxxag, Center for Open Science.
    5. Jonathan J Hunt & Peter Dayan & Geoffrey J Goodhill, 2013. "Sparse Coding Can Predict Primary Visual Cortex Receptive Field Changes Induced by Abnormal Visual Input," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-17, May.
    6. Robert Legenstein & Wolfgang Maass, 2014. "Ensembles of Spiking Neurons with Noise Support Optimal Probabilistic Inference in a Dynamically Changing Environment," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-27, October.
    7. Dejan Pecevski & Lars Buesing & Wolfgang Maass, 2011. "Probabilistic Inference in General Graphical Models through Sampling in Stochastic Networks of Spiking Neurons," PLOS Computational Biology, Public Library of Science, vol. 7(12), pages 1-25, December.
    8. Richard D Lange & Ankani Chattoraj & Jeffrey M Beck & Jacob L Yates & Ralf M Haefner, 2021. "A confirmation bias in perceptual decision-making due to hierarchical approximate inference," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-30, November.
    9. Stefan Habenschuss & Zeno Jonke & Wolfgang Maass, 2013. "Stochastic Computations in Cortical Microcircuit Models," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-28, November.
    10. Jingwei Sun & Jian Li & Hang Zhang, 2019. "Human representation of multimodal distributions as clusters of samples," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-29, May.
    11. Sourav Dutta & Georgios Detorakis & Abhishek Khanna & Benjamin Grisafe & Emre Neftci & Suman Datta, 2022. "Neural sampling machine with stochastic synapse allows brain-like learning and inference," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Laurence Aitchison & Máté Lengyel, 2016. "The Hamiltonian Brain: Efficient Probabilistic Inference with Excitatory-Inhibitory Neural Circuit Dynamics," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-24, December.
    13. Matthieu Gilson & Tomoki Fukai & Anthony N Burkitt, 2012. "Spectral Analysis of Input Spike Trains by Spike-Timing-Dependent Plasticity," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-22, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.