IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003039.html
   My bibliography  Save this article

Host Resistance, Population Structure and the Long-Term Persistence of Bubonic Plague: Contributions of a Modelling Approach in the Malagasy Focus

Author

Listed:
  • Fanny Gascuel
  • Marc Choisy
  • Jean-Marc Duplantier
  • Florence Débarre
  • Carine Brouat

Abstract

Although bubonic plague is an endemic zoonosis in many countries around the world, the factors responsible for the persistence of this highly virulent disease remain poorly known. Classically, the endemic persistence of plague is suspected to be due to the coexistence of plague resistant and plague susceptible rodents in natural foci, and/or to a metapopulation structure of reservoirs. Here, we test separately the effect of each of these factors on the long-term persistence of plague. We analyse the dynamics and equilibria of a model of plague propagation, consistent with plague ecology in Madagascar, a major focus where this disease is endemic since the 1920s in central highlands. By combining deterministic and stochastic analyses of this model, and including sensitivity analyses, we show that (i) endemicity is favoured by intermediate host population sizes, (ii) in large host populations, the presence of resistant rats is sufficient to explain long-term persistence of plague, and (iii) the metapopulation structure of susceptible host populations alone can also account for plague endemicity, thanks to both subdivision and the subsequent reduction in the size of subpopulations, and extinction-recolonization dynamics of the disease. In the light of these results, we suggest scenarios to explain the localized presence of plague in Madagascar.Author Summary: Bubonic plague, known to have marked human history by three deadly pandemics, is an infectious disease which mainly circulates in wild rodent populations and is transmitted by fleas. Although this disease can be quickly lethal to its host, it has persisted on long-term in many rodent populations around the world. The reasons for this persistence remain poorly known. Two mechanisms have been invoked, but not yet explicitly and independently tested: first, the spatial structure of rodent populations (subdivision into several subpopulations) and secondly, the presence of, not only plague-susceptible rodents, but also plague-resistant ones. To gain insight into the role of the above two factors in plague persistence, we analysed a mathematical model of plague propagation. We applied our analyses to the case of Madagascar, where plague has persisted on central highlands since the 1920s and is responsible for about 30% of the human cases worldwide. We found that the long-term persistence of plague can be explained by the presence of any of the above two factors. These results allowed us to propose scenarios to explain the localized presence of plague in the Malagasy highlands, and help understand the persistence of plague in many wild foci.

Suggested Citation

  • Fanny Gascuel & Marc Choisy & Jean-Marc Duplantier & Florence Débarre & Carine Brouat, 2013. "Host Resistance, Population Structure and the Long-Term Persistence of Bubonic Plague: Contributions of a Modelling Approach in the Malagasy Focus," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-10, May.
  • Handle: RePEc:plo:pcbi00:1003039
    DOI: 10.1371/journal.pcbi.1003039
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003039
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003039&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Herwig Leirs & Nils Chr. Stenseth & James D. Nichols & James E. Hines & Ron Verhagen & Walter Verheyen, 1997. "Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent," Nature, Nature, vol. 389(6647), pages 176-180, September.
    2. Soetaert, Karline & Petzoldt, Thomas & Setzer, R. Woodrow, 2010. "Solving Differential Equations in R: Package deSolve," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i09).
    3. S. Davis & P. Trapman & H. Leirs & M. Begon & J. A. P. Heesterbeek, 2008. "The abundance threshold for plague as a critical percolation phenomenon," Nature, Nature, vol. 454(7204), pages 634-637, July.
    4. M. J. Keeling & C. A. Gilligan, 2000. "Metapopulation dynamics of bubonic plague," Nature, Nature, vol. 407(6806), pages 903-906, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Layla Höckerstedt & Elina Numminen & Ben Ashby & Mike Boots & Anna Norberg & Anna-Liisa Laine, 2022. "Spatially structured eco-evolutionary dynamics in a host-pathogen interaction render isolated populations vulnerable to disease," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Fatima-Zahra Jaouimaa & Daniel Dempsey & Suzanne Van Osch & Stephen Kinsella & Kevin Burke & Jason Wyse & James Sweeney, 2021. "An age-structured SEIR model for COVID-19 incidence in Dublin, Ireland with framework for evaluating health intervention cost," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-25, December.
    3. Fabian Siuda & Uwe Sunde, 2021. "Disease and demographic development: the legacy of the plague," Journal of Economic Growth, Springer, vol. 26(1), pages 1-30, March.
    4. Belém Barbosa & José Ramón Saura & Dag Bennett, 2024. "How do entrepreneurs perform digital marketing across the customer journey? A review and discussion of the main uses," The Journal of Technology Transfer, Springer, vol. 49(1), pages 69-103, February.
    5. Overstall, Antony M. & Woods, David C. & Martin, Kieran J., 2019. "Bayesian prediction for physical models with application to the optimization of the synthesis of pharmaceutical products using chemical kinetics," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 126-142.
    6. Serrouya, R. & Dickie, M. & DeMars, C. & Wittmann, M.J. & Boutin, S., 2020. "Predicting the effects of restoring linear features on woodland caribou populations," Ecological Modelling, Elsevier, vol. 416(C).
    7. Brendan D Cowled & Michael P Ward & Shawn W Laffan & Francesca Galea & M Graeme Garner & Anna J MacDonald & Ian Marsh & Petra Muellner & Katherine Negus & Sumaiya Quasim & Andrew P Woolnough & Stephen, 2012. "Integrating Survey and Molecular Approaches to Better Understand Wildlife Disease Ecology," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-8, October.
    8. Zadoki Tabo & Chester Kalinda & Lutz Breuer & Christian Albrecht, 2023. "Adapting Strategies for Effective Schistosomiasis Prevention: A Mathematical Modeling Approach," Mathematics, MDPI, vol. 11(12), pages 1-18, June.
    9. Moore, Christopher M. & Catella, Samantha A. & Abbott, Karen C., 2018. "Population dynamics of mutualism and intraspecific density dependence: How θ-logistic density dependence affects mutualistic positive feedback," Ecological Modelling, Elsevier, vol. 368(C), pages 191-197.
    10. Moulin, Thibault & Perasso, Antoine & Gillet, François, 2018. "Modelling vegetation dynamics in managed grasslands: Responses to drivers depend on species richness," Ecological Modelling, Elsevier, vol. 374(C), pages 22-36.
    11. Huang, Xudong & Yang, Dong & Kang, Zhiqin, 2021. "Impact of pore distribution characteristics on percolation threshold based on site percolation theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    12. Yan, Chuan & Zhang, Zhibin, 2018. "Dome-shaped transition between positive and negative interactions maintains higher persistence and biomass in more complex ecological networks," Ecological Modelling, Elsevier, vol. 370(C), pages 14-21.
    13. Cécile Cathalot & Erwan G. Roussel & Antoine Perhirin & Vanessa Creff & Jean-Pierre Donval & Vivien Guyader & Guillaume Roullet & Jonathan Gula & Christian Tamburini & Marc Garel & Anne Godfroy & Pier, 2021. "Hydrothermal plumes as hotspots for deep-ocean heterotrophic microbial biomass production," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    14. Lamonica, Dominique & Herbach, Ulysse & Orias, Frédéric & Clément, Bernard & Charles, Sandrine & Lopes, Christelle, 2016. "Mechanistic modelling of daphnid-algae dynamics within a laboratory microcosm," Ecological Modelling, Elsevier, vol. 320(C), pages 213-230.
    15. Stahl, Gerhard & Wang, Shaohui & Wendt, Markus, 2011. "Validate Correlation of an ESG: Treasury Yields across," Hannover Economic Papers (HEP) dp-476, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    16. Mariano Méndez-Suárez & Ignacio Danvila-del-Valle, 2023. "Negative Word of Mouth (NWOM) using Compartmental Epidemiological Models in Banking Digital Transformation," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 17(1), March.
    17. Zhang, Yu J. & Harte, John, 2015. "Population dynamics and competitive outcome derive from resource allocation statistics: The governing influence of the distinguishability of individuals," Theoretical Population Biology, Elsevier, vol. 105(C), pages 53-63.
    18. Laperrière, Vincent & Brugger, Katharina & Rubel, Franz, 2016. "Cross-scale modeling of a vector-borne disease, from the individual to the metapopulation: The seasonal dynamics of sylvatic plague in Kazakhstan," Ecological Modelling, Elsevier, vol. 342(C), pages 34-48.
    19. Alex Root, 2019. "Mathematical Modeling of The Challenge to Detect Pancreatic Adenocarcinoma Early with Biomarkers," Challenges, MDPI, vol. 10(1), pages 1-15, April.
    20. Chevallier, Damien & Mourrain, Baptiste & Girondot, Marc, 2020. "Modelling leatherback biphasic indeterminate growth using a modified Gompertz equation," Ecological Modelling, Elsevier, vol. 426(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.