IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002676.html
   My bibliography  Save this article

Speeded Reaching Movements around Invisible Obstacles

Author

Listed:
  • Todd E Hudson
  • Uta Wolfe
  • Laurence T Maloney

Abstract

We analyze the problem of obstacle avoidance from a Bayesian decision-theoretic perspective using an experimental task in which reaches around a virtual obstacle were made toward targets on an upright monitor. Subjects received monetary rewards for touching the target and incurred losses for accidentally touching the intervening obstacle. The locations of target-obstacle pairs within the workspace were varied from trial to trial. We compared human performance to that of a Bayesian ideal movement planner (who chooses motor strategies maximizing expected gain) using the Dominance Test employed in Hudson et al. (2007). The ideal movement planner suffers from the same sources of noise as the human, but selects movement plans that maximize expected gain in the presence of that noise. We find good agreement between the predictions of the model and actual performance in most but not all experimental conditions. Author Summary: In everyday, cluttered environments, moving to reach or grasp an object can result in unintended collisions with other objects along the path of movement. Depending on what we run into (a priceless Ming vase, a crotchety colleague) we can suffer serious monetary or social consequences. It makes sense to choose movement trajectories that trade off the value of reaching a goal against the consequences of unintended collisions along the way. In the research described here, subjects made speeded movements to touch targets while avoiding obstacles placed along the natural reach trajectory. There were explicit monetary rewards for hitting the target and explicit monetary costs for accidentally hitting the intervening obstacle. We varied the cost and location of the obstacle across conditions. The task was to earn as large a monetary bonus as possible, which required that reaches curve around obstacles only to the extent justified by the location and cost of the obstacle. We compared human performance in this task to that of a Bayesian movement planner who maximized expected gain on each trial. In most conditions, but not all, movement strategies were close to optimal.

Suggested Citation

  • Todd E Hudson & Uta Wolfe & Laurence T Maloney, 2012. "Speeded Reaching Movements around Invisible Obstacles," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-9, September.
  • Handle: RePEc:plo:pcbi00:1002676
    DOI: 10.1371/journal.pcbi.1002676
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002676
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002676&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002676?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Todd E Hudson & Hadley Tassinari & Michael S Landy, 2010. "Compensation for Changing Motor Uncertainty," PLOS Computational Biology, Public Library of Science, vol. 6(11), pages 1-14, November.
    2. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    3. Todd E Hudson & Laurence T Maloney & Michael S Landy, 2008. "Optimal Compensation for Temporal Uncertainty in Movement Planning," PLOS Computational Biology, Public Library of Science, vol. 4(7), pages 1-9, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joseph Snider & Dongpyo Lee & Howard Poizner & Sergei Gepshtein, 2015. "Prospective Optimization with Limited Resources," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-28, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hang Zhang & Nathaniel D Daw & Laurence T Maloney, 2013. "Testing Whether Humans Have an Accurate Model of Their Own Motor Uncertainty in a Speeded Reaching Task," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-11, May.
    2. Seow Eng Ong & Davin Wang & Calvin Chua, 2023. "Disruptive Innovation and Real Estate Agency: The Disruptee Strikes Back," The Journal of Real Estate Finance and Economics, Springer, vol. 67(2), pages 287-317, August.
    3. Christiane Goodfellow & Dirk Schiereck & Steffen Wippler, 2013. "Are behavioural finance equity funds a superior investment? A note on fund performance and market efficiency," Journal of Asset Management, Palgrave Macmillan, vol. 14(2), pages 111-119, April.
    4. Philippe Fevrier & Sebastien Gay, 2005. "Informed Consent Versus Presumed Consent The Role of the Family in Organ Donations," HEW 0509007, University Library of Munich, Germany.
    5. Shuang Yao & Donghua Yu & Yan Song & Hao Yao & Yuzhen Hu & Benhai Guo, 2018. "Dry Bulk Carrier Investment Selection through a Dual Group Decision Fusing Mechanism in the Green Supply Chain," Sustainability, MDPI, vol. 10(12), pages 1-19, November.
    6. Senik, Claudia, 2009. "Direct evidence on income comparisons and their welfare effects," Journal of Economic Behavior & Organization, Elsevier, vol. 72(1), pages 408-424, October.
    7. Jose Apesteguia & Miguel Ballester, 2009. "A theory of reference-dependent behavior," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 40(3), pages 427-455, September.
    8. Shoji, Isao & Kanehiro, Sumei, 2016. "Disposition effect as a behavioral trading activity elicited by investors' different risk preferences," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 104-112.
    9. Christoph Engel & Michael Kurschilgen, 2011. "Fairness Ex Ante and Ex Post: Experimentally Testing Ex Post Judicial Intervention into Blockbuster Deals," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 8(4), pages 682-708, December.
    10. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    11. Boone, Jan & Sadrieh, Abdolkarim & van Ours, Jan C., 2009. "Experiments on unemployment benefit sanctions and job search behavior," European Economic Review, Elsevier, vol. 53(8), pages 937-951, November.
    12. Singal, Vijay & Xu, Zhaojin, 2011. "Selling winners, holding losers: Effect on fund flows and survival of disposition-prone mutual funds," Journal of Banking & Finance, Elsevier, vol. 35(10), pages 2704-2718, October.
    13. Jos'e Cl'audio do Nascimento, 2019. "Behavioral Biases and Nonadditive Dynamics in Risk Taking: An Experimental Investigation," Papers 1908.01709, arXiv.org, revised Apr 2023.
    14. Alex Cukierman & Anton Muscatelli, 2001. "Do Central Banks have Precautionary Demands for Expansions and for Price Stability?," Working Papers 2002_4, Business School - Economics, University of Glasgow, revised Mar 2002.
    15. Dash, Saumya Ranjan & Maitra, Debasish, 2018. "Does sentiment matter for stock returns? Evidence from Indian stock market using wavelet approach," Finance Research Letters, Elsevier, vol. 26(C), pages 32-39.
    16. José F. Tudón M., 2019. "Perception, utility, and evolution," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(2), pages 191-208, December.
    17. Kerri Brick & Martine Visser & Justine Burns, 2012. "Risk Aversion: Experimental Evidence from South African Fishing Communities," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(1), pages 133-152.
    18. Francesco GUALA, 2017. "Preferences: Neither Behavioural nor Mental," Departmental Working Papers 2017-05, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    19. Lepone, Grace & Tian, Gary, 2020. "Usage of conditional orders and the disposition effect in the stock market," Pacific-Basin Finance Journal, Elsevier, vol. 61(C).
    20. Shunda, Nicholas, 2009. "Auctions with a buy price: The case of reference-dependent preferences," Games and Economic Behavior, Elsevier, vol. 67(2), pages 645-664, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.