IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000982.html
   My bibliography  Save this article

Compensation for Changing Motor Uncertainty

Author

Listed:
  • Todd E Hudson
  • Hadley Tassinari
  • Michael S Landy

Abstract

When movement outcome differs consistently from the intended movement, errors are used to correct subsequent movements (e.g., adaptation to displacing prisms or force fields) by updating an internal model of motor and/or sensory systems. Here, we examine changes to an internal model of the motor system under changes in the variance structure of movement errors lacking an overall bias. We introduced a horizontal visuomotor perturbation to change the statistical distribution of movement errors anisotropically, while monetary gains/losses were awarded based on movement outcomes. We derive predictions for simulated movement planners, each differing in its internal model of the motor system. We find that humans optimally respond to the overall change in error magnitude, but ignore the anisotropy of the error distribution. Through comparison with simulated movement planners, we found that aimpoints corresponded quantitatively to an ideal movement planner that updates a strictly isotropic (circular) internal model of the error distribution. Aimpoints were planned in a manner that ignored the direction-dependence of error magnitudes, despite the continuous availability of unambiguous information regarding the anisotropic distribution of actual motor errors.Author Summary: To plan effective movements of the limbs, the human motor system must keep track of certain parameters: Obvious examples are the lengths and masses of to-be-controlled limb segments. In addition, the nervous system tracks its own motor outcome noise, which is important for selecting among movement plans where there are substantial costs associated with movement inaccuracies (e.g., reaching past a glass of red wine on a cluttered dinner table). Here, we introduce a change in motor noise in a reaching task: reaches were perturbed unpredictably by activating a reflex that introduced unplanned horizontal arm motion at the ends of reaches. We show that the motor system updates an internal model of the overall increase in motor noise induced by this reflex perturbation, but fails to represent the anisotropic component of the noise. This result is consistent with current theories of motor planning and control in which reach magnitudes and directions are represented independently, because a system that updates only a circular representation of recent motor errors is equivalent to a system that monitors only the magnitudes of recent errors, and ignores their directions.

Suggested Citation

  • Todd E Hudson & Hadley Tassinari & Michael S Landy, 2010. "Compensation for Changing Motor Uncertainty," PLOS Computational Biology, Public Library of Science, vol. 6(11), pages 1-14, November.
  • Handle: RePEc:plo:pcbi00:1000982
    DOI: 10.1371/journal.pcbi.1000982
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000982
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000982&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000982?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Whitney & David A. Westwood & Melvyn A. Goodale, 2003. "The influence of visual motion on fast reaching movements to a stationary object," Nature, Nature, vol. 423(6942), pages 869-873, June.
    2. Todd E Hudson & Laurence T Maloney & Michael S Landy, 2008. "Optimal Compensation for Temporal Uncertainty in Movement Planning," PLOS Computational Biology, Public Library of Science, vol. 4(7), pages 1-9, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Todd E Hudson & Uta Wolfe & Laurence T Maloney, 2012. "Speeded Reaching Movements around Invisible Obstacles," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-9, September.
    2. Hang Zhang & Nathaniel D Daw & Laurence T Maloney, 2013. "Testing Whether Humans Have an Accurate Model of Their Own Motor Uncertainty in a Speeded Reaching Task," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-11, May.
    3. Jean-Jacques Orban de Xivry, 2013. "Trial-to-Trial Reoptimization of Motor Behavior Due to Changes in Task Demands Is Limited," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-9, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shih-Wei Wu & Maria F Dal Martello & Laurence T Maloney, 2009. "Sub-Optimal Allocation of Time in Sequential Movements," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-13, December.
    2. Hang Zhang & Camille Morvan & Louis-Alexandre Etezad-Heydari & Laurence T Maloney, 2012. "Very Slow Search and Reach: Failure to Maximize Expected Gain in an Eye-Hand Coordination Task," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-12, October.
    3. Eli Brenner & Jeroen B J Smeets, 2015. "How Moving Backgrounds Influence Interception," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-21, March.
    4. Todd E Hudson & Uta Wolfe & Laurence T Maloney, 2012. "Speeded Reaching Movements around Invisible Obstacles," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-9, September.
    5. Joseph Snider & Dongpyo Lee & Howard Poizner & Sergei Gepshtein, 2015. "Prospective Optimization with Limited Resources," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-28, September.
    6. Hang Zhang & Nathaniel D Daw & Laurence T Maloney, 2013. "Testing Whether Humans Have an Accurate Model of Their Own Motor Uncertainty in a Speeded Reaching Task," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-11, May.
    7. Luigi Acerbi & Daniel M Wolpert & Sethu Vijayakumar, 2012. "Internal Representations of Temporal Statistics and Feedback Calibrate Motor-Sensory Interval Timing," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-19, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.