IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002522.html
   My bibliography  Save this article

Emergence of a Small-World Functional Network in Cultured Neurons

Author

Listed:
  • Julia H Downes
  • Mark W Hammond
  • Dimitris Xydas
  • Matthew C Spencer
  • Victor M Becerra
  • Kevin Warwick
  • Ben J Whalley
  • Slawomir J Nasuto

Abstract

The functional networks of cultured neurons exhibit complex network properties similar to those found in vivo. Starting from random seeding, cultures undergo significant reorganization during the initial period in vitro, yet despite providing an ideal platform for observing developmental changes in neuronal connectivity, little is known about how a complex functional network evolves from isolated neurons. In the present study, evolution of functional connectivity was estimated from correlations of spontaneous activity. Network properties were quantified using complex measures from graph theory and used to compare cultures at different stages of development during the first 5 weeks in vitro. Networks obtained from young cultures (14 days in vitro) exhibited a random topology, which evolved to a small-world topology during maturation. The topology change was accompanied by an increased presence of highly connected areas (hubs) and network efficiency increased with age. The small-world topology balances integration of network areas with segregation of specialized processing units. The emergence of such network structure in cultured neurons, despite a lack of external input, points to complex intrinsic biological mechanisms. Moreover, the functional network of cultures at mature ages is efficient and highly suited to complex processing tasks. Author Summary: Many social, technological and biological networks exhibit properties that are neither completely random, nor fully regular. They are known as complex networks and statistics exist to characterize their structure. Until recently, such networks have primarily been analyzed as fixed structures, which enable interaction between their components (nodes). The present work is one of the first empirical studies investigating the adaptation of complex networks [1]. Network evolution is particularly important for applying complex network analysis to biological systems, where the evolution of the network reflects the biological processes that drive it. Here, we characterize the functional networks obtained from neurons grown in vitro. Network properties are described at seven day intervals during the neurons' maturation period. Initially, neurons formed random networks, which spontaneously reorganized to a ‘small-world’ architecture. The ‘small-world’ concept derives from the study of social networks, where it is referred to as ‘six-degrees of separation’: the connection of any two individuals by as few as six acquaintances. In brain networks, this translates to rapid interaction between neurons, mediated by a few links between locally connected clusters (cliques) of neurons. This architecture is considered optimal for efficient information processing and its spontaneous emergence in cultured neurons is remarkable.

Suggested Citation

  • Julia H Downes & Mark W Hammond & Dimitris Xydas & Matthew C Spencer & Victor M Becerra & Kevin Warwick & Ben J Whalley & Slawomir J Nasuto, 2012. "Emergence of a Small-World Functional Network in Cultured Neurons," PLOS Computational Biology, Public Library of Science, vol. 8(5), pages 1-17, May.
  • Handle: RePEc:plo:pcbi00:1002522
    DOI: 10.1371/journal.pcbi.1002522
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002522
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002522&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002522?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    2. Mark D Humphries & Kevin Gurney, 2008. "Network ‘Small-World-Ness’: A Quantitative Method for Determining Canonical Network Equivalence," PLOS ONE, Public Library of Science, vol. 3(4), pages 1-10, April.
    3. Goded Shahaf & Danny Eytan & Asaf Gal & Einat Kermany & Vladimir Lyakhov & Christoph Zrenner & Shimon Marom, 2008. "Order-Based Representation in Random Networks of Cortical Neurons," PLOS Computational Biology, Public Library of Science, vol. 4(11), pages 1-11, November.
    4. Duncan J. Watts & Steven H. Strogatz, 1998. "Collective dynamics of ‘small-world’ networks," Nature, Nature, vol. 393(6684), pages 440-442, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Walter Quattrociocchi & Guido Caldarelli & Antonio Scala, 2014. "Self-Healing Networks: Redundancy and Structure," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-7, February.
    2. Nie, Tingyuan & Fan, Bo & Wang, Zhenhao, 2022. "Complexity and robustness of weighted circuit network of placement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    3. Ping Pei & Haihan Zhang & Huizhen Zhang & Chen Yang & Tianbo An, 2024. "Network Synchronization via Pinning Control from an Attacker-Defender Game Perspective," Mathematics, MDPI, vol. 12(12), pages 1-17, June.
    4. Shriram Ashok Kumar & Maliha Tasnim & Zohvin Singh Basnyat & Faezeh Karimi & Kaveh Khalilpour, 2022. "Resilience Analysis of Australian Electricity and Gas Transmission Networks," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    5. Babutsidze, Zakaria, 2018. "The rise of electronic social networks and implications for advertisers," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 27-39.
    6. Huang, Wencheng & Zhou, Bowen & Yu, Yaocheng & Sun, Hao & Xu, Pengpeng, 2021. "Using the disaster spreading theory to analyze the cascading failure of urban rail transit network," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Stefano Cardanobile & Volker Pernice & Moritz Deger & Stefan Rotter, 2012. "Inferring General Relations between Network Characteristics from Specific Network Ensembles," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-9, June.
    8. Milena Oehlers & Benjamin Fabian, 2021. "Graph Metrics for Network Robustness—A Survey," Mathematics, MDPI, vol. 9(8), pages 1-48, April.
    9. Yong He & Jinhui Wang & Liang Wang & Zhang J Chen & Chaogan Yan & Hong Yang & Hehan Tang & Chaozhe Zhu & Qiyong Gong & Yufeng Zang & Alan C Evans, 2009. "Uncovering Intrinsic Modular Organization of Spontaneous Brain Activity in Humans," PLOS ONE, Public Library of Science, vol. 4(4), pages 1-18, April.
    10. Feng, Zhidan & Song, Huimin & Qi, Xingqin, 2024. "A novel algorithm for the generalized network dismantling problem based on dynamic programming," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    11. Tony H. Grubesic & Timothy C. Matisziw & Alan T. Murray & Diane Snediker, 2008. "Comparative Approaches for Assessing Network Vulnerability," International Regional Science Review, , vol. 31(1), pages 88-112, January.
    12. Alexandru Topîrceanu, 2022. "Benchmarking Cost-Effective Opinion Injection Strategies in Complex Networks," Mathematics, MDPI, vol. 10(12), pages 1-16, June.
    13. Marcus Engsig & Alejandro Tejedor & Yamir Moreno & Efi Foufoula-Georgiou & Chaouki Kasmi, 2024. "DomiRank Centrality reveals structural fragility of complex networks via node dominance," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Lv, Changchun & Yuan, Ziwei & Si, Shubin & Duan, Dongli & Yao, Shirui, 2022. "Cascading failure in networks with dynamical behavior against multi-node removal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    15. Nicolás Magner & Jaime F. Lavín & Mauricio A. Valle, 2022. "Modeling Synchronization Risk among Sustainable Exchange Trade Funds: A Statistical and Network Analysis Approach," Mathematics, MDPI, vol. 10(19), pages 1-30, October.
    16. Önder Kartal & Oliver Ebenhöh, 2009. "Ground State Robustness as an Evolutionary Design Principle in Signaling Networks," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-8, December.
    17. Huan Wang & Chuang Ma & Han-Shuang Chen & Ying-Cheng Lai & Hai-Feng Zhang, 2022. "Full reconstruction of simplicial complexes from binary contagion and Ising data," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Sanjeev Goyal & Fernando Vega-Redondo, 2000. "Learning, Network Formation and Coordination," Econometric Society World Congress 2000 Contributed Papers 0113, Econometric Society.
    19. Vinayak, & Raghuvanshi, Adarsh & kshitij, Avinash, 2023. "Signatures of capacity development through research collaborations in artificial intelligence and machine learning," Journal of Informetrics, Elsevier, vol. 17(1).
    20. Quayle, A.P. & Siddiqui, A.S. & Jones, S.J.M., 2006. "Preferential network perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 823-840.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.