A novel algorithm for the generalized network dismantling problem based on dynamic programming
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2024.114585
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ash, J. & Newth, D., 2007. "Optimizing complex networks for resilience against cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 673-683.
- Xiao-Long Ren & Niels Gleinig & Dijana Tolić & Nino Antulov-Fantulin, 2018. "Underestimated Cost of Targeted Attacks on Complex Networks," Complexity, Hindawi, vol. 2018, pages 1-15, January.
- Duncan J. Watts & Steven H. Strogatz, 1998. "Collective dynamics of ‘small-world’ networks," Nature, Nature, vol. 393(6684), pages 440-442, June.
- Hai-Jun Zhou, 2013. "Spin glass approach to the feedback vertex set problem," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(11), pages 1-9, November.
- Liang Tian & Amir Bashan & Da-Ning Shi & Yang-Yu Liu, 2017. "Articulation points in complex networks," Nature Communications, Nature, vol. 8(1), pages 1-9, April.
- Flaviano Morone & Hernán A. Makse, 2015. "Correction: Corrigendum: Influence maximization in complex networks through optimal percolation," Nature, Nature, vol. 527(7579), pages 544-544, November.
- G. Paul & T. Tanizawa & S. Havlin & H. Stanley, 2004. "Optimization of robustness of complex networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 187-191, March.
- Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
- Flaviano Morone & Hernán A. Makse, 2015. "Influence maximization in complex networks through optimal percolation," Nature, Nature, vol. 524(7563), pages 65-68, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wandelt, Sebastian & Lin, Wei & Sun, Xiaoqian & Zanin, Massimiliano, 2022. "From random failures to targeted attacks in network dismantling," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
- Ping Pei & Haihan Zhang & Huizhen Zhang & Chen Yang & Tianbo An, 2024. "Network Synchronization via Pinning Control from an Attacker-Defender Game Perspective," Mathematics, MDPI, vol. 12(12), pages 1-17, June.
- Xiao-Long Ren & Niels Gleinig & Dijana Tolić & Nino Antulov-Fantulin, 2018. "Underestimated Cost of Targeted Attacks on Complex Networks," Complexity, Hindawi, vol. 2018, pages 1-15, January.
- Li Zeng & Changjun Fan & Chao Chen, 2023. "Leveraging Minimum Nodes for Optimum Key Player Identification in Complex Networks: A Deep Reinforcement Learning Strategy with Structured Reward Shaping," Mathematics, MDPI, vol. 11(17), pages 1-13, August.
- Alexandru Topîrceanu, 2022. "Benchmarking Cost-Effective Opinion Injection Strategies in Complex Networks," Mathematics, MDPI, vol. 10(12), pages 1-16, June.
- Xinyu Huang & Dongming Chen & Dongqi Wang & Tao Ren, 2020. "MINE: Identifying Top- k Vital Nodes in Complex Networks via Maximum Influential Neighbors Expansion," Mathematics, MDPI, vol. 8(9), pages 1-25, August.
- Gangwal, Utkarsh & Singh, Mayank & Pandey, Pradumn Kumar & Kamboj, Deepak & Chatterjee, Samrat & Bhatia, Udit, 2022. "Identifying early-warning indicators of onset of sudden collapse in networked infrastructure systems against sequential disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
- Shriram Ashok Kumar & Maliha Tasnim & Zohvin Singh Basnyat & Faezeh Karimi & Kaveh Khalilpour, 2022. "Resilience Analysis of Australian Electricity and Gas Transmission Networks," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
- Li, Sheng & Liu, Wenwen & Wu, Ruizi & Li, Junli, 2023. "An adaptive attack model to network controllability," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
- Vitor H. P. Louzada & Fabio Daolio & Hans J. Herrmann & Marco Tomassini, "undated". "Smart rewiring for network robustness," Working Papers ETH-RC-14-004, ETH Zurich, Chair of Systems Design.
- Jiang, Wenjun & Fan, Tianlong & Li, Changhao & Zhang, Chuanfu & Zhang, Tao & Luo, Zong-fu, 2024. "Comprehensive analysis of network robustness evaluation based on convolutional neural networks with spatial pyramid pooling," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
- Yu, Yang & Deng, Ye & Tan, Suo-Yi & Wu, Jun, 2018. "Efficient disintegration strategy in directed networks based on tabu search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 435-442.
- Zhang, Dayong & Men, Hao & Zhang, Zhaoxin, 2024. "Assessing the stability of collaboration networks: A structural cohesion analysis perspective," Journal of Informetrics, Elsevier, vol. 18(1).
- Han, Jihui & Zhang, Ge & Dong, Gaogao & Zhao, Longfeng & Shi, Yuefeng & Zou, Yijiang, 2024. "Exact analysis of generalized degree-based percolation without memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
- Sun, Peng Gang & Che, Wanping & Quan, Yining & Wang, Shuzhen & Miao, Qiguang, 2022. "Random networks are heterogeneous exhibiting a multi-scaling law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
- Yibo Dong & Jin Liu & Jiaqi Ren & Zhe Li & Weili Li, 2023. "Protecting Infrastructure Networks: Solving the Stackelberg Game with Interval-Valued Intuitionistic Fuzzy Number Payoffs," Mathematics, MDPI, vol. 11(24), pages 1-18, December.
- Kovalenko, K. & Romance, M. & Vasilyeva, E. & Aleja, D. & Criado, R. & Musatov, D. & Raigorodskii, A.M. & Flores, J. & Samoylenko, I. & Alfaro-Bittner, K. & Perc, M. & Boccaletti, S., 2022. "Vector centrality in hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
- Quayle, A.P. & Siddiqui, A.S. & Jones, S.J.M., 2006. "Preferential network perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 823-840.
- Deng, Ye & Wu, Jun & Tan, Yue-jin, 2016. "Optimal attack strategy of complex networks based on tabu search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 74-81.
- Fink, Christian G. & Fullin, Kelly & Gutierrez, Guillermo & Omodt, Nathan & Zinnecker, Sydney & Sprint, Gina & McCulloch, Sean, 2023. "A centrality measure for quantifying spread on weighted, directed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
More about this item
Keywords
Generalized network dismantling; Block; Cut node; Dynamic programming;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s096007792400136x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.