IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i6p3273-d768496.html
   My bibliography  Save this article

Resilience Analysis of Australian Electricity and Gas Transmission Networks

Author

Listed:
  • Shriram Ashok Kumar

    (Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW 2007, Australia)

  • Maliha Tasnim

    (Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW 2007, Australia)

  • Zohvin Singh Basnyat

    (Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW 2007, Australia)

  • Faezeh Karimi

    (Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW 2007, Australia)

  • Kaveh Khalilpour

    (Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW 2007, Australia)

Abstract

Given they are two critical infrastructure areas, the security of electricity and gas networks is highly important due to potential multifaceted social and economic impacts. Unexpected errors or sabotage can lead to blackouts, causing a significant loss for the public, businesses, and governments. Climate change and an increasing number of consequent natural disasters (e.g., bushfires and floods) are other emerging network resilience challenges. In this paper, we used network science to examine the topological resilience of national energy networks with two case studies of Australian gas and electricity networks. To measure the fragility and resilience of these energy networks, we assessed various topological features and theories of percolation. We found that both networks follow the degree distribution of power-law and the characteristics of a scale-free network. Then, using these models, we conducted node and edge removal experiments. The analysis identified the most critical nodes that can trigger cascading failure within the network upon a fault. The analysis results can be used by the network operators to improve network resilience through various mitigation strategies implemented on the identified critical nodes.

Suggested Citation

  • Shriram Ashok Kumar & Maliha Tasnim & Zohvin Singh Basnyat & Faezeh Karimi & Kaveh Khalilpour, 2022. "Resilience Analysis of Australian Electricity and Gas Transmission Networks," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3273-:d:768496
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/6/3273/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/6/3273/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saramäki, Jari & Kaski, Kimmo, 2004. "Scale-free networks generated by random walkers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 80-86.
    2. Filippo Radicchi & Claudio Castellano, 2015. "Breaking of the site-bond percolation universality in networks," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
    3. Ash, J. & Newth, D., 2007. "Optimizing complex networks for resilience against cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 673-683.
    4. Mark Veillette & Murad S. Taqqu, 2012. "Distribution Functions of Poisson Random Integrals: Analysis and Computation," Methodology and Computing in Applied Probability, Springer, vol. 14(2), pages 169-202, June.
    5. Duncan J. Watts & Steven H. Strogatz, 1998. "Collective dynamics of ‘small-world’ networks," Nature, Nature, vol. 393(6684), pages 440-442, June.
    6. Cristopher Moore & M. E. J. Newman, 2000. "Exact Solution of Site and Bond Percolation on Small-World Networks," Working Papers 00-01-007, Santa Fe Institute.
    7. Crucitti, Paolo & Latora, Vito & Marchiori, Massimo, 2004. "A topological analysis of the Italian electric power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(1), pages 92-97.
    8. Wang, Ke-Wen & Sun, Jian-Meng & Guan, Ji-Teng & Zhu, Da-Wei, 2007. "A percolation study of electrical properties of reservoir rocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 19-26.
    9. Xia, Yongxiang & Fan, Jin & Hill, David, 2010. "Cascading failure in Watts–Strogatz small-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(6), pages 1281-1285.
    10. Chassin, David P. & Posse, Christian, 2005. "Evaluating North American electric grid reliability using the Barabási–Albert network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(2), pages 667-677.
    11. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    12. Guo, Hengdao & Zheng, Ciyan & Iu, Herbert Ho-Ching & Fernando, Tyrone, 2017. "A critical review of cascading failure analysis and modeling of power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 9-22.
    13. Ole E. Barndorff‐Nielsen, 2007. "Random Graph Dynamics by Rick Durrett," International Statistical Review, International Statistical Institute, vol. 75(3), pages 428-428, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junuo Zhou & Lin Yang, 2022. "Network-Based Research on Organizational Resilience in Wuhan Thunder God Mountain Hospital Project during the COVID-19 Pandemic," Sustainability, MDPI, vol. 14(16), pages 1-23, August.
    2. Xu Li & Bin Lv & Binke Lang & Qixiang Chen, 2022. "Exploring the Cascading Failure in Taxi Transportation Networks," Sustainability, MDPI, vol. 14(20), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H Jönsson & J Johansson & H Johansson, 2008. "Identifying critical components in technical infrastructure networks," Journal of Risk and Reliability, , vol. 222(2), pages 235-243, June.
    2. Ma, Xiangyu & Zhou, Huijie & Li, Zhiyi, 2021. "On the resilience of modern power systems: A complex network perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Giuliano Andrea Pagani & Marco Aiello, 2015. "A complex network approach for identifying vulnerabilities of the medium and low voltage grid," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 11(1), pages 36-61.
    4. Lucas Cuadra & Sancho Salcedo-Sanz & Javier Del Ser & Silvia Jiménez-Fernández & Zong Woo Geem, 2015. "A Critical Review of Robustness in Power Grids Using Complex Networks Concepts," Energies, MDPI, vol. 8(9), pages 1-55, August.
    5. Zhang, Yanlu & Yang, Naiding, 2013. "Research on robustness of R&D network under cascading propagation of risk with gray attack information," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 1-8.
    6. Feng, Zhidan & Song, Huimin & Qi, Xingqin, 2024. "A novel algorithm for the generalized network dismantling problem based on dynamic programming," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    7. Tony H. Grubesic & Timothy C. Matisziw & Alan T. Murray & Diane Snediker, 2008. "Comparative Approaches for Assessing Network Vulnerability," International Regional Science Review, , vol. 31(1), pages 88-112, January.
    8. Saniee Monfared, Momhammad Ali & Jalili, Mahdi & Alipour, Zohreh, 2014. "Topology and vulnerability of the Iranian power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 24-33.
    9. Bompard, Ettore & Napoli, Roberto & Xue, Fei, 2009. "Analysis of structural vulnerabilities in power transmission grids," International Journal of Critical Infrastructure Protection, Elsevier, vol. 2(1), pages 5-12.
    10. Pagani, Giuliano Andrea & Aiello, Marco, 2013. "The Power Grid as a complex network: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(11), pages 2688-2700.
    11. Wang, Zhuoyang & Chen, Guo & Hill, David J. & Dong, Zhao Yang, 2016. "A power flow based model for the analysis of vulnerability in power networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 105-115.
    12. Zhou, Yaoming & Wang, Junwei, 2018. "Efficiency of complex networks under failures and attacks: A percolation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 658-664.
    13. Liu, Run-Ran & Chu, Changchang & Meng, Fanyuan, 2023. "Higher-order interdependent percolation on hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    14. Zhu, Qian & Zhu, Zhiliang & Wang, Yifan & Yu, Hai, 2016. "Fuzzy-information-based robustness of interconnected networks against attacks and failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 194-203.
    15. Lin, Yi-Kuei & Yeh, Cheng-Ta, 2011. "Maximal network reliability for a stochastic power transmission network," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1332-1339.
    16. Wen, Xiangxi & Tu, Congliang & Wu, Minggong, 2018. "Node importance evaluation in aviation network based on “No Return” node deletion method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 546-559.
    17. Wang, Yingcong & Xiao, Renbin, 2016. "An ant colony based resilience approach to cascading failures in cluster supply network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 150-166.
    18. Sinan Aral & Paramveer S. Dhillon, 2023. "What (Exactly) Is Novelty in Networks? Unpacking the Vision Advantages of Brokers, Bridges, and Weak Ties," Management Science, INFORMS, vol. 69(2), pages 1092-1115, February.
    19. Ouyang, Min & Zhao, Lijing & Hong, Liu & Pan, Zhezhe, 2014. "Comparisons of complex network based models and real train flow model to analyze Chinese railway vulnerability," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 38-46.
    20. Mahmoud Saleh & Yusef Esa & Ahmed Mohamed, 2018. "Applications of Complex Network Analysis in Electric Power Systems," Energies, MDPI, vol. 11(6), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3273-:d:768496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.