IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1001057.html
   My bibliography  Save this article

Is My Network Module Preserved and Reproducible?

Author

Listed:
  • Peter Langfelder
  • Rui Luo
  • Michael C Oldham
  • Steve Horvath

Abstract

In many applications, one is interested in determining which of the properties of a network module change across conditions. For example, to validate the existence of a module, it is desirable to show that it is reproducible (or preserved) in an independent test network. Here we study several types of network preservation statistics that do not require a module assignment in the test network. We distinguish network preservation statistics by the type of the underlying network. Some preservation statistics are defined for a general network (defined by an adjacency matrix) while others are only defined for a correlation network (constructed on the basis of pairwise correlations between numeric variables). Our applications show that the correlation structure facilitates the definition of particularly powerful module preservation statistics. We illustrate that evaluating module preservation is in general different from evaluating cluster preservation. We find that it is advantageous to aggregate multiple preservation statistics into summary preservation statistics. We illustrate the use of these methods in six gene co-expression network applications including 1) preservation of cholesterol biosynthesis pathway in mouse tissues, 2) comparison of human and chimpanzee brain networks, 3) preservation of selected KEGG pathways between human and chimpanzee brain networks, 4) sex differences in human cortical networks, 5) sex differences in mouse liver networks. While we find no evidence for sex specific modules in human cortical networks, we find that several human cortical modules are less preserved in chimpanzees. In particular, apoptosis genes are differentially co-expressed between humans and chimpanzees. Our simulation studies and applications show that module preservation statistics are useful for studying differences between the modular structure of networks. Data, R software and accompanying tutorials can be downloaded from the following webpage: http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/ModulePreservation.Author Summary: In network applications, one is often interested in studying whether modules are preserved across multiple networks. For example, to determine whether a pathway of genes is perturbed in a certain condition, one can study whether its connectivity pattern is no longer preserved. Non-preserved modules can either be biologically uninteresting (e.g., reflecting data outliers) or interesting (e.g., reflecting sex specific modules). An intuitive approach for studying module preservation is to cross-tabulate module membership. But this approach often cannot address questions about the preservation of connectivity patterns between nodes. Thus, cross-tabulation based approaches often fail to recognize that important aspects of a network module are preserved. Cross-tabulation methods make it difficult to argue that a module is not preserved. The weak statement (“the reference module does not overlap with any of the identified test set modules”) is less relevant in practice than the strong statement (“the module cannot be found in the test network irrespective of the parameter settings of the module detection procedure”). Module preservation statistics have important applications, e.g. we show that the wiring of apoptosis genes in a human cortical network differs from that in chimpanzees.

Suggested Citation

  • Peter Langfelder & Rui Luo & Michael C Oldham & Steve Horvath, 2011. "Is My Network Module Preserved and Reproducible?," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-29, January.
  • Handle: RePEc:plo:pcbi00:1001057
    DOI: 10.1371/journal.pcbi.1001057
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1001057
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1001057&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1001057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang Bin & Horvath Steve, 2005. "A General Framework for Weighted Gene Co-Expression Network Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-45, August.
    2. Eric A Stone & Julien F Ayroles, 2009. "Modulated Modularity Clustering as an Exploratory Tool for Functional Genomic Inference," PLOS Genetics, Public Library of Science, vol. 5(5), pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rinku Sharma & Garima Singh & Sudeepto Bhattacharya & Ashutosh Singh, 2018. "Comparative transcriptome meta-analysis of Arabidopsis thaliana under drought and cold stress," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-18, September.
    2. Samaneh Mansouri & André M. Pessoni & Arturo Marroquín-Rivera & Eric M. Parise & Carol A. Tamminga & Gustavo Turecki & Eric J. Nestler & Ting-Huei Chen & Benoit Labonté, 2023. "Transcriptional dissection of symptomatic profiles across the brain of men and women with depression," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Jenna Lihavainen & Jan Šimura & Pushan Bag & Nazeer Fataftah & Kathryn Megan Robinson & Nicolas Delhomme & Ondřej Novák & Karin Ljung & Stefan Jansson, 2023. "Salicylic acid metabolism and signalling coordinate senescence initiation in aspen in nature," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. Kazuhisa Shibata & Takeo Watanabe & Mitsuo Kawato & Yuka Sasaki, 2016. "Differential Activation Patterns in the Same Brain Region Led to Opposite Emotional States," PLOS Biology, Public Library of Science, vol. 14(9), pages 1-27, September.
    5. Li, Jie & Shen, Xuzhu & Li, YaoTang, 2021. "Modeling the temporal dynamics of gut microbiota from a local community perspective," Ecological Modelling, Elsevier, vol. 460(C).
    6. Kynon J. M. Benjamin & Ria Arora & Arthur S. Feltrin & Geo Pertea & Hunter H. Giles & Joshua M. Stolz & Laura D’Ignazio & Leonardo Collado-Torres & Joo Heon Shin & William S. Ulrich & Thomas M. Hyde &, 2024. "Sex affects transcriptional associations with schizophrenia across the dorsolateral prefrontal cortex, hippocampus, and caudate nucleus," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Shinya Tasaki & Jishu Xu & Denis R. Avey & Lynnaun Johnson & Vladislav A. Petyuk & Robert J. Dawe & David A. Bennett & Yanling Wang & Chris Gaiteri, 2022. "Inferring protein expression changes from mRNA in Alzheimer’s dementia using deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Yuhao Min & Xue Wang & Özkan İş & Tulsi A. Patel & Junli Gao & Joseph S. Reddy & Zachary S. Quicksall & Thuy Nguyen & Shu Lin & Frederick Q. Tutor-New & Jessica L. Chalk & Adriana O. Mitchell & Julia , 2023. "Cross species systems biology discovers glial DDR2, STOM, and KANK2 as therapeutic targets in progressive supranuclear palsy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. James R Roede & Karan Uppal & Youngja Park & Kichun Lee & Vilinh Tran & Douglas Walker & Frederick H Strobel & Shannon L Rhodes & Beate Ritz & Dean P Jones, 2013. "Serum Metabolomics of Slow vs. Rapid Motor Progression Parkinson’s Disease: a Pilot Study," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-1, October.
    10. Peter Langfelder & Paul S Mischel & Steve Horvath, 2013. "When Is Hub Gene Selection Better than Standard Meta-Analysis?," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yixuan Qiu & Jing Lei & Kathryn Roeder, 2023. "Gradient-based sparse principal component analysis with extensions to online learning," Biometrika, Biometrika Trust, vol. 110(2), pages 339-360.
    2. Ruiz Vargas, E. & Mitchell, D.G.V. & Greening, S.G. & Wahl, L.M., 2014. "Topology of whole-brain functional MRI networks: Improving the truncated scale-free model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 151-158.
    3. Sim, Min Kyu & Deng, Shijie & Huo, Xiaoming, 2021. "What can cluster analysis offer in investing? - Measuring structural changes in the investment universe," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 299-315.
    4. Yan Guo & Hui Yu & Haocan Song & Jiapeng He & Olufunmilola Oyebamiji & Huining Kang & Jie Ping & Scott Ness & Yu Shyr & Fei Ye, 2021. "MetaGSCA: A tool for meta-analysis of gene set differential coexpression," PLOS Computational Biology, Public Library of Science, vol. 17(5), pages 1-15, May.
    5. Xue Jiang & Han Zhang & Xiongwen Quan & Zhandong Liu & Yanbin Yin, 2017. "Disease-related gene module detection based on a multi-label propagation clustering algorithm," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-17, May.
    6. Mandel, Antoine & Landini, Simone & Gallegati, Mauro & Gintis, Herbert, 2015. "Price dynamics, financial fragility and aggregate volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 257-277.
    7. Elva María Novoa-del-Toro & Efrén Mezura-Montes & Matthieu Vignes & Morgane Térézol & Frédérique Magdinier & Laurent Tichit & Anaïs Baudot, 2021. "A multi-objective genetic algorithm to find active modules in multiplex biological networks," PLOS Computational Biology, Public Library of Science, vol. 17(8), pages 1-24, August.
    8. Matias Nehuen Iglesias, 2021. "The Overlooked Insights from Correlation Structures in Economic Geography," Papers in Evolutionary Economic Geography (PEEG) 2105, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Jan 2021.
    9. Lingxue Zhang & Seyoung Kim, 2014. "Learning Gene Networks under SNP Perturbations Using eQTL Datasets," PLOS Computational Biology, Public Library of Science, vol. 10(2), pages 1-20, February.
    10. Benjamin A Samuels & E David Leonardo & Alex Dranovsky & Amanda Williams & Erik Wong & Addie May I Nesbitt & Richard D McCurdy & Rene Hen & Mark Alter, 2014. "Global State Measures of the Dentate Gyrus Gene Expression System Predict Antidepressant-Sensitive Behaviors," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-10, January.
    11. Tingting Bo & Jie Li & Ganlu Hu & Ge Zhang & Wei Wang & Qian Lv & Shaoling Zhao & Junjie Ma & Meng Qin & Xiaohui Yao & Meiyun Wang & Guang-Zhong Wang & Zheng Wang, 2023. "Brain-wide and cell-specific transcriptomic insights into MRI-derived cortical morphology in macaque monkeys," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Chang Su & Zichun Xu & Xinning Shan & Biao Cai & Hongyu Zhao & Jingfei Zhang, 2023. "Cell-type-specific co-expression inference from single cell RNA-sequencing data," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Sahra Uygun & Cheng Peng & Melissa D Lehti-Shiu & Robert L Last & Shin-Han Shiu, 2016. "Utility and Limitations of Using Gene Expression Data to Identify Functional Associations," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-27, December.
    14. Li, Jie & Wang, Lidan & Zhou, Zhong-Qiang & Zhang, Yongjie, 2021. "Monitoring or tunneling? Information interaction among large shareholders and the crash risk of the stock price," Pacific-Basin Finance Journal, Elsevier, vol. 65(C).
    15. Khang Tsung Fei & Yap Von Bing, 2010. "The Apportionment of Total Genetic Variation by Categorical Analysis of Variance," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-34, January.
    16. Shaoshuo Li & Baixing Chen & Hao Chen & Zhen Hua & Yang Shao & Heng Yin & Jianwei Wang, 2021. "Analysis of potential genetic biomarkers and molecular mechanism of smoking-related postmenopausal osteoporosis using weighted gene co-expression network analysis and machine learning," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-18, September.
    17. Peter Langfelder & Fuying Gao & Nan Wang & David Howland & Seung Kwak & Thomas F Vogt & Jeffrey S Aaronson & Jim Rosinski & Giovanni Coppola & Steve Horvath & X William Yang, 2018. "MicroRNA signatures of endogenous Huntingtin CAG repeat expansion in mice," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-20, January.
    18. Renaud Tissier & Jeanine Houwing-Duistermaat & Mar Rodríguez-Girondo, 2018. "Improving stability of prediction models based on correlated omics data by using network approaches," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-23, February.
    19. Shujuan Zhao & Kedous Y. Mekbib & Martijn A. Ent & Garrett Allington & Andrew Prendergast & Jocelyn E. Chau & Hannah Smith & John Shohfi & Jack Ocken & Daniel Duran & Charuta G. Furey & Le Thi Hao & P, 2023. "Mutation of key signaling regulators of cerebrovascular development in vein of Galen malformations," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    20. Wang, Tao & Xiao, Shiying & Yan, Jun & Zhang, Panpan, 2021. "Regional and sectoral structures of the Chinese economy: A network perspective from multi-regional input–output tables," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1001057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.