IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42686-5.html
   My bibliography  Save this article

Transcriptional dissection of symptomatic profiles across the brain of men and women with depression

Author

Listed:
  • Samaneh Mansouri

    (CERVO Brain Research Centre
    Université Laval)

  • André M. Pessoni

    (CERVO Brain Research Centre
    Université Laval)

  • Arturo Marroquín-Rivera

    (CERVO Brain Research Centre
    Université Laval)

  • Eric M. Parise

    (Icahn School of Medicine at Mount Sinai, New York)

  • Carol A. Tamminga

    (The University of Texas Southwestern Medical Center)

  • Gustavo Turecki

    (Douglas Mental Health University Institute
    McGill University)

  • Eric J. Nestler

    (Icahn School of Medicine at Mount Sinai, New York)

  • Ting-Huei Chen

    (CERVO Brain Research Centre
    Laval University)

  • Benoit Labonté

    (CERVO Brain Research Centre
    Université Laval)

Abstract

Major depressive disorder (MDD) is one of the most important causes of disability worldwide. While recent work provides insights into the molecular alterations in the brain of patients with MDD, whether these molecular signatures can be associated with the expression of specific symptom domains remains unclear. Here, we identified sex-specific gene modules associated with the expression of MDD, combining differential gene expression and co-expression network analyses in six cortical and subcortical brain regions. Our results show varying levels of network homology between males and females across brain regions, although the associations between these structures and the expression of MDD remain highly sex specific. We refined these associations to several symptom domains and identified transcriptional signatures associated with distinct functional pathways, including GABAergic and glutamatergic neurotransmission, metabolic processes and intracellular signal transduction, across brain regions associated with distinct symptomatic profiles in a sex-specific fashion. In most cases, these associations were specific to males or to females with MDD, although a subset of gene modules associated with common symptomatic features in both sexes were also identified. Together, our findings suggest that the expression of distinct MDD symptom domains associates with sex-specific transcriptional structures across brain regions.

Suggested Citation

  • Samaneh Mansouri & André M. Pessoni & Arturo Marroquín-Rivera & Eric M. Parise & Carol A. Tamminga & Gustavo Turecki & Eric J. Nestler & Ting-Huei Chen & Benoit Labonté, 2023. "Transcriptional dissection of symptomatic profiles across the brain of men and women with depression," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42686-5
    DOI: 10.1038/s41467-023-42686-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42686-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42686-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang Bin & Horvath Steve, 2005. "A General Framework for Weighted Gene Co-Expression Network Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-45, August.
    2. Peter Langfelder & Rui Luo & Michael C Oldham & Steve Horvath, 2011. "Is My Network Module Preserved and Reproducible?," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-29, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Langfelder & Paul S Mischel & Steve Horvath, 2013. "When Is Hub Gene Selection Better than Standard Meta-Analysis?," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-16, April.
    2. Yixuan Qiu & Jing Lei & Kathryn Roeder, 2023. "Gradient-based sparse principal component analysis with extensions to online learning," Biometrika, Biometrika Trust, vol. 110(2), pages 339-360.
    3. Ruiz Vargas, E. & Mitchell, D.G.V. & Greening, S.G. & Wahl, L.M., 2014. "Topology of whole-brain functional MRI networks: Improving the truncated scale-free model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 151-158.
    4. Rinku Sharma & Garima Singh & Sudeepto Bhattacharya & Ashutosh Singh, 2018. "Comparative transcriptome meta-analysis of Arabidopsis thaliana under drought and cold stress," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-18, September.
    5. Yan Guo & Hui Yu & Haocan Song & Jiapeng He & Olufunmilola Oyebamiji & Huining Kang & Jie Ping & Scott Ness & Yu Shyr & Fei Ye, 2021. "MetaGSCA: A tool for meta-analysis of gene set differential coexpression," PLOS Computational Biology, Public Library of Science, vol. 17(5), pages 1-15, May.
    6. Xue Jiang & Han Zhang & Xiongwen Quan & Zhandong Liu & Yanbin Yin, 2017. "Disease-related gene module detection based on a multi-label propagation clustering algorithm," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-17, May.
    7. Mandel, Antoine & Landini, Simone & Gallegati, Mauro & Gintis, Herbert, 2015. "Price dynamics, financial fragility and aggregate volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 257-277.
    8. Peter Langfelder & Rui Luo & Michael C Oldham & Steve Horvath, 2011. "Is My Network Module Preserved and Reproducible?," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-29, January.
    9. Elva María Novoa-del-Toro & Efrén Mezura-Montes & Matthieu Vignes & Morgane Térézol & Frédérique Magdinier & Laurent Tichit & Anaïs Baudot, 2021. "A multi-objective genetic algorithm to find active modules in multiplex biological networks," PLOS Computational Biology, Public Library of Science, vol. 17(8), pages 1-24, August.
    10. Matias Nehuen Iglesias, 2021. "The Overlooked Insights from Correlation Structures in Economic Geography," Papers in Evolutionary Economic Geography (PEEG) 2105, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Jan 2021.
    11. Lingxue Zhang & Seyoung Kim, 2014. "Learning Gene Networks under SNP Perturbations Using eQTL Datasets," PLOS Computational Biology, Public Library of Science, vol. 10(2), pages 1-20, February.
    12. Benjamin A Samuels & E David Leonardo & Alex Dranovsky & Amanda Williams & Erik Wong & Addie May I Nesbitt & Richard D McCurdy & Rene Hen & Mark Alter, 2014. "Global State Measures of the Dentate Gyrus Gene Expression System Predict Antidepressant-Sensitive Behaviors," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-10, January.
    13. Tingting Bo & Jie Li & Ganlu Hu & Ge Zhang & Wei Wang & Qian Lv & Shaoling Zhao & Junjie Ma & Meng Qin & Xiaohui Yao & Meiyun Wang & Guang-Zhong Wang & Zheng Wang, 2023. "Brain-wide and cell-specific transcriptomic insights into MRI-derived cortical morphology in macaque monkeys," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Chang Su & Zichun Xu & Xinning Shan & Biao Cai & Hongyu Zhao & Jingfei Zhang, 2023. "Cell-type-specific co-expression inference from single cell RNA-sequencing data," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Sahra Uygun & Cheng Peng & Melissa D Lehti-Shiu & Robert L Last & Shin-Han Shiu, 2016. "Utility and Limitations of Using Gene Expression Data to Identify Functional Associations," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-27, December.
    16. Li, Jie & Wang, Lidan & Zhou, Zhong-Qiang & Zhang, Yongjie, 2021. "Monitoring or tunneling? Information interaction among large shareholders and the crash risk of the stock price," Pacific-Basin Finance Journal, Elsevier, vol. 65(C).
    17. Khang Tsung Fei & Yap Von Bing, 2010. "The Apportionment of Total Genetic Variation by Categorical Analysis of Variance," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-34, January.
    18. Shaoshuo Li & Baixing Chen & Hao Chen & Zhen Hua & Yang Shao & Heng Yin & Jianwei Wang, 2021. "Analysis of potential genetic biomarkers and molecular mechanism of smoking-related postmenopausal osteoporosis using weighted gene co-expression network analysis and machine learning," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-18, September.
    19. Peter Langfelder & Fuying Gao & Nan Wang & David Howland & Seung Kwak & Thomas F Vogt & Jeffrey S Aaronson & Jim Rosinski & Giovanni Coppola & Steve Horvath & X William Yang, 2018. "MicroRNA signatures of endogenous Huntingtin CAG repeat expansion in mice," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-20, January.
    20. Renaud Tissier & Jeanine Houwing-Duistermaat & Mar Rodríguez-Girondo, 2018. "Improving stability of prediction models based on correlated omics data by using network approaches," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-23, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42686-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.