The Energy Landscape, Folding Pathways and the Kinetics of a Knotted Protein
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pcbi.1000835
Download full text from publisher
References listed on IDEAS
- Diego Prada-Gracia & Jesús Gómez-Gardeñes & Pablo Echenique & Fernando Falo, 2009. "Exploring the Free Energy Landscape: From Dynamics to Networks and Back," PLOS Computational Biology, Public Library of Science, vol. 5(6), pages 1-9, June.
- Rhonald C Lua & Alexander Y Grosberg, 2006. "Statistics of Knots, Geometry of Conformations, and Evolution of Proteins," PLOS Computational Biology, Public Library of Science, vol. 2(5), pages 1-8, May.
- David J. Wales & Mark A. Miller & Tiffany R. Walsh, 1998. "Archetypal energy landscapes," Nature, Nature, vol. 394(6695), pages 758-760, August.
- William R. Taylor, 2000. "A deeply knotted protein structure and how it might fold," Nature, Nature, vol. 406(6798), pages 916-919, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tatjana Škrbić & Cristian Micheletti & Pietro Faccioli, 2012. "The Role of Non-Native Interactions in the Folding of Knotted Proteins," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-12, June.
- Capitán, José A. & Aguirre, Jacobo & Manrubia, Susanna, 2015. "Dynamical community structure of populations evolving on genotype networks," Chaos, Solitons & Fractals, Elsevier, vol. 72(C), pages 99-106.
- Nick Kinney & Molly Hickman & Ramu Anandakrishnan & Harold R Garner, 2020. "Crossing complexity of space-filling curves reveals entanglement of S-phase DNA," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-20, August.
- Ye Lei & Zhaoyong Li & Guangcheng Wu & Lijie Zhang & Lu Tong & Tianyi Tong & Qiong Chen & Lingxiang Wang & Chenqi Ge & Yuxi Wei & Yuanjiang Pan & Andrew C.-H. Sue & Linjun Wang & Feihe Huang & Hao Li, 2022. "A trefoil knot self-templated through imination in water," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
- Sichun Yang & Benoît Roux, 2008. "Src Kinase Conformational Activation: Thermodynamics, Pathways, and Mechanisms," PLOS Computational Biology, Public Library of Science, vol. 4(3), pages 1-14, March.
- Bikulov, A.Kh. & Zubarev, A.P., 2021. "Ultrametric theory of conformational dynamics of protein molecules in a functional state and the description of experiments on the kinetics of CO binding to myoglobin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
- Zúñiga-Galindo, W.A., 2022. "Ultrametric diffusion, rugged energy landscapes and transition networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
- Christoph Flamm & Ivo L. Hofacker & Peter F. Stadler & Michael T. Wolfinger, 2001. "Barrier Trees of Degenerate Landscapes," Working Papers 01-09-053, Santa Fe Institute.
- Lindsey A. Doyle & Brittany Takushi & Ryan D. Kibler & Lukas F. Milles & Carolina T. Orozco & Jonathan D. Jones & Sophie E. Jackson & Barry L. Stoddard & Philip Bradley, 2023. "De novo design of knotted tandem repeat proteins," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
- Silvio a Beccara & Tatjana Škrbić & Roberto Covino & Cristian Micheletti & Pietro Faccioli, 2013. "Folding Pathways of a Knotted Protein with a Realistic Atomistic Force Field," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-9, March.
- Livia B. Pártay & Gábor Csányi & Noam Bernstein, 2021. "Nested sampling for materials," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(8), pages 1-18, August.
- Shevchuk, Roman & Snarskii, Andrew, 2012. "Transforming a complex network to an acyclic one," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6184-6189.
- Rhonald C Lua & Alexander Y Grosberg, 2006. "Statistics of Knots, Geometry of Conformations, and Evolution of Proteins," PLOS Computational Biology, Public Library of Science, vol. 2(5), pages 1-8, May.
- Miguel A Soler & Patrícia F N Faísca, 2013. "Effects of Knots on Protein Folding Properties," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-10, September.
- Zhiwen Li & Jingjing Zhang & Gao Li & Richard J. Puddephatt, 2024. "Self-assembly of the smallest and tightest molecular trefoil knot," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
- Miguel A Soler & Patrícia F N Faísca, 2012. "How Difficult Is It to Fold a Knotted Protein? In Silico Insights from Surface-Tethered Folding Experiments," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-13, December.
- Alexander Begun & Sergei Liubimov & Alexander Molochkov & Antti J Niemi, 2021. "On topology and knotty entanglement in protein folding," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-17, January.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000835. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.