IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002504.html
   My bibliography  Save this article

The Role of Non-Native Interactions in the Folding of Knotted Proteins

Author

Listed:
  • Tatjana Škrbić
  • Cristian Micheletti
  • Pietro Faccioli

Abstract

Stochastic simulations of coarse-grained protein models are used to investigate the propensity to form knots in early stages of protein folding. The study is carried out comparatively for two homologous carbamoyltransferases, a natively-knotted N-acetylornithine carbamoyltransferase (AOTCase) and an unknotted ornithine carbamoyltransferase (OTCase). In addition, two different sets of pairwise amino acid interactions are considered: one promoting exclusively native interactions, and the other additionally including non-native quasi-chemical and electrostatic interactions. With the former model neither protein shows a propensity to form knots. With the additional non-native interactions, knotting propensity remains negligible for the natively-unknotted OTCase while for AOTCase it is much enhanced. Analysis of the trajectories suggests that the different entanglement of the two transcarbamylases follows from the tendency of the C-terminal to point away from (for OTCase) or approach and eventually thread (for AOTCase) other regions of partly-folded protein. The analysis of the OTCase/AOTCase pair clarifies that natively-knotted proteins can spontaneously knot during early folding stages and that non-native sequence-dependent interactions are important for promoting and disfavouring early knotting events. Author Summary: Knotted proteins provide an ideal ground for examining how amino acid interactions (which are local) can favor their folding into a native state of non-trivial topology (which is a global property). Some of the mechanisms that can aid knot formation are investigated here by comparing coarse-grained folding simulations of two enzymes that are structurally similar, and yet have natively knotted and unknotted states, respectively. In folding simulations that exclusively promote the formation of native contacts, neither protein forms knots. Strikingly, when sequence-dependent non-native interactions between amino acids are introduced, one observes knotting events but only for the natively-knotted protein. The results support the importance of non-native interactions in favoring or disfavoring knotting events in the early stages of folding.

Suggested Citation

  • Tatjana Škrbić & Cristian Micheletti & Pietro Faccioli, 2012. "The Role of Non-Native Interactions in the Folding of Knotted Proteins," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-12, June.
  • Handle: RePEc:plo:pcbi00:1002504
    DOI: 10.1371/journal.pcbi.1002504
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002504
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002504&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002504?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rhonald C Lua & Alexander Y Grosberg, 2006. "Statistics of Knots, Geometry of Conformations, and Evolution of Proteins," PLOS Computational Biology, Public Library of Science, vol. 2(5), pages 1-8, May.
    2. William R. Taylor, 2000. "A deeply knotted protein structure and how it might fold," Nature, Nature, vol. 406(6798), pages 916-919, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel A Soler & Patrícia F N Faísca, 2012. "How Difficult Is It to Fold a Knotted Protein? In Silico Insights from Surface-Tethered Folding Experiments," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-13, December.
    2. Silvio a Beccara & Tatjana Škrbić & Roberto Covino & Cristian Micheletti & Pietro Faccioli, 2013. "Folding Pathways of a Knotted Protein with a Realistic Atomistic Force Field," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-9, March.
    3. Miguel A Soler & Patrícia F N Faísca, 2013. "Effects of Knots on Protein Folding Properties," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-10, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael C Prentiss & David J Wales & Peter G Wolynes, 2010. "The Energy Landscape, Folding Pathways and the Kinetics of a Knotted Protein," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-12, July.
    2. Nick Kinney & Molly Hickman & Ramu Anandakrishnan & Harold R Garner, 2020. "Crossing complexity of space-filling curves reveals entanglement of S-phase DNA," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-20, August.
    3. Ye Lei & Zhaoyong Li & Guangcheng Wu & Lijie Zhang & Lu Tong & Tianyi Tong & Qiong Chen & Lingxiang Wang & Chenqi Ge & Yuxi Wei & Yuanjiang Pan & Andrew C.-H. Sue & Linjun Wang & Feihe Huang & Hao Li, 2022. "A trefoil knot self-templated through imination in water," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Lindsey A. Doyle & Brittany Takushi & Ryan D. Kibler & Lukas F. Milles & Carolina T. Orozco & Jonathan D. Jones & Sophie E. Jackson & Barry L. Stoddard & Philip Bradley, 2023. "De novo design of knotted tandem repeat proteins," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Silvio a Beccara & Tatjana Škrbić & Roberto Covino & Cristian Micheletti & Pietro Faccioli, 2013. "Folding Pathways of a Knotted Protein with a Realistic Atomistic Force Field," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-9, March.
    6. Rhonald C Lua & Alexander Y Grosberg, 2006. "Statistics of Knots, Geometry of Conformations, and Evolution of Proteins," PLOS Computational Biology, Public Library of Science, vol. 2(5), pages 1-8, May.
    7. Miguel A Soler & Patrícia F N Faísca, 2013. "Effects of Knots on Protein Folding Properties," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-10, September.
    8. Zhiwen Li & Jingjing Zhang & Gao Li & Richard J. Puddephatt, 2024. "Self-assembly of the smallest and tightest molecular trefoil knot," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    9. Miguel A Soler & Patrícia F N Faísca, 2012. "How Difficult Is It to Fold a Knotted Protein? In Silico Insights from Surface-Tethered Folding Experiments," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-13, December.
    10. Alexander Begun & Sergei Liubimov & Alexander Molochkov & Antti J Niemi, 2021. "On topology and knotty entanglement in protein folding," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-17, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.