IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v72y2015icp99-106.html
   My bibliography  Save this article

Dynamical community structure of populations evolving on genotype networks

Author

Listed:
  • Capitán, José A.
  • Aguirre, Jacobo
  • Manrubia, Susanna

Abstract

Neutral evolutionary dynamics of replicators occurs on large and heterogeneous networks of genotypes. These networks, formed by all genotypes that yield the same phenotype, have a complex architecture that conditions the molecular composition of populations and their movements on genome spaces. Here we consider as an example the case of populations evolving on RNA secondary structure neutral networks and study the community structure of the network revealed through dynamical properties of the population at equilibrium and during adaptive transients. We unveil a rich hierarchical community structure that, eventually, can be traced back to the non-trivial relationship between RNA secondary structure and sequence composition. We demonstrate that usual measures of modularity that only take into account the static, topological structure of networks, cannot identify the community structure disclosed by population dynamics.

Suggested Citation

  • Capitán, José A. & Aguirre, Jacobo & Manrubia, Susanna, 2015. "Dynamical community structure of populations evolving on genotype networks," Chaos, Solitons & Fractals, Elsevier, vol. 72(C), pages 99-106.
  • Handle: RePEc:eee:chsofr:v:72:y:2015:i:c:p:99-106
    DOI: 10.1016/j.chaos.2014.11.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077914002094
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2014.11.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jesús Gómez-Gardeñes & Gorka Zamora-López & Yamir Moreno & Alex Arenas, 2010. "From Modular to Centralized Organization of Synchronization in Functional Areas of the Cat Cerebral Cortex," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-11, August.
    2. Diego Prada-Gracia & Jesús Gómez-Gardeñes & Pablo Echenique & Fernando Falo, 2009. "Exploring the Free Energy Landscape: From Dynamics to Networks and Back," PLOS Computational Biology, Public Library of Science, vol. 5(6), pages 1-9, June.
    3. Eric van Nimwegen & James P. Crutchfield & Martijn Huynen, 1999. "Neutral Evolution of Mutational Robustness," Working Papers 99-03-021, Santa Fe Institute.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadi, Negar & Pei, Yulong & Pechenizkiy, Mykola, 2019. "Effect of linear mixing in EEG on synchronization and complex network measures studied using the Kuramoto model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 289-308.
    2. Shiun-Jr Yang & David J. Wales & Esmae J. Woods & Graham R. Fleming, 2024. "Design principles for energy transfer in the photosystem II supercomplex from kinetic transition networks," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Ferrari, F.A.S. & Viana, R.L. & Reis, A.S. & Iarosz, K.C. & Caldas, I.L. & Batista, A.M., 2018. "A network of networks model to study phase synchronization using structural connection matrix of human brain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 162-170.
    4. Shevchuk, Roman & Snarskii, Andrew, 2012. "Transforming a complex network to an acyclic one," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6184-6189.
    5. Michael C Prentiss & David J Wales & Peter G Wolynes, 2010. "The Energy Landscape, Folding Pathways and the Kinetics of a Knotted Protein," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-12, July.
    6. Wang, Qingyun & Zheng, Yanhong & Ma, Jun, 2013. "Cooperative dynamics in neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 19-27.
    7. Elizabeth Aston & Alastair Channon & Charles Day & Christopher G Knight, 2013. "Critical Mutation Rate Has an Exponential Dependence on Population Size in Haploid and Diploid Populations," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-11, December.
    8. Santos, M.S. & Szezech, J.D. & Borges, F.S. & Iarosz, K.C. & Caldas, I.L. & Batista, A.M. & Viana, R.L. & Kurths, J., 2017. "Chimera-like states in a neuronal network model of the cat brain," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 86-91.
    9. Tobias Sikosek & Erich Bornberg-Bauer & Hue Sun Chan, 2012. "Evolutionary Dynamics on Protein Bi-stability Landscapes can Potentially Resolve Adaptive Conflicts," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-17, September.
    10. James P Crutchfield & Sean Whalen, 2012. "Structural Drift: The Population Dynamics of Sequential Learning," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-12, June.
    11. Yang Tang & Huijun Gao & Wei Zou & Jürgen Kurths, 2012. "Identifying Controlling Nodes in Neuronal Networks in Different Scales," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-13, July.
    12. David Samu & Anil K Seth & Thomas Nowotny, 2014. "Influence of Wiring Cost on the Large-Scale Architecture of Human Cortical Connectivity," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-24, April.
    13. Proulx, Stephen R., 2011. "The rate of multi-step evolution in Moran and Wright–Fisher populations," Theoretical Population Biology, Elsevier, vol. 80(3), pages 197-207.
    14. Jing Han & Lin Wang, 2013. "Nondestructive Intervention to Multi-Agent Systems through an Intelligent Agent," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-11, May.
    15. Stefano Ciliberti & Olivier C Martin & Andreas Wagner, 2007. "Robustness Can Evolve Gradually in Complex Regulatory Gene Networks with Varying Topology," PLOS Computational Biology, Public Library of Science, vol. 3(2), pages 1-10, February.
    16. Campos, Paulo R.A & Adami, Christoph & Wilke, Claus O, 2002. "Optimal adaptive performance and delocalization in NK fitness landscapes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 304(3), pages 495-506.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:72:y:2015:i:c:p:99-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.