IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000085.html
   My bibliography  Save this article

Silent Synapses, LTP, and the Indirect Parallel-Fibre Pathway: Computational Consequences of Optimal Cerebellar Noise-Processing

Author

Listed:
  • John Porrill
  • Paul Dean

Abstract

Computational analysis of neural systems is at its most useful when it uncovers principles that provide a unified account of phenomena across multiple scales and levels of description. Here we analyse a widely used model of the cerebellar contribution to sensori-motor learning to demonstrate both that its response to intrinsic and sensor noise is optimal, and that the unexpected synaptic and behavioural consequences of this optimality can explain a wide range of experimental data. The response of the Marr-Albus adaptive-filter model of the cerebellar microcircuit to noise was examined in the context of vestibulo-ocular reflex calibration. We found that, when appropriately connected, an adaptive-filter model using the covariance learning rule to adjust the weights of synapses between parallel fibres and Purkinje cells learns weight values that are optimal given the relative amount of signal and noise carried by each parallel fibre. This optimality principle is consistent with data on the cerebellar role in smooth pursuit eye movements, and predicts that many synaptic weights must be very small, providing an explanation for the experimentally observed preponderance of silent synapses. Such a preponderance has in its turn two further consequences. First, an additional inhibitory pathway from parallel fibre to Purkinje cell is required if Purkinje cell activity is to be altered in either direction from a starting point of silent synapses. Second, cerebellar learning tasks must often proceed via LTP, rather than LTD as is widely assumed. Taken together, these considerations have profound behavioural consequences, including the optimal combination of sensori-motor information, and asymmetry and hysteresis of sensori-motor learning rates.Author Summary: The cerebellum or “little brain” is a fist-sized structure located towards the rear of the brain, containing as many neurons as the rest of the brain combined, whose functions include learning to perform skilled motor tasks accurately and automatically. It is wired up into repeating microcircuits, sometimes referred to as cerebellar chips, in which learning alters the strength of the synapses between the parallel fibres, which carry input information, and the large Purkinje cell neurons, which produce outputs contributing to skilled movements. The cerebellar chip has a striking resemblance to a mathematical structure called an adaptive filter used by control engineers, and we have used this analogy to analyse its information-processing properties. We show that it learns synaptic strengths that minimise the errors in performance caused by unavoidable noise in sensors and cerebellar circuitry. Optimality principles of this kind have proved to be powerful tools for understanding complex systems. Here we show that optimality explains neuronal-level features of cerebellar learning such as the mysterious preponderance of “silent” synapses between parallel fibres and Purkinje cells and behavioural-level features such as the dependence of rate of learning of a motor skill on learning history.

Suggested Citation

  • John Porrill & Paul Dean, 2008. "Silent Synapses, LTP, and the Indirect Parallel-Fibre Pathway: Computational Consequences of Optimal Cerebellar Noise-Processing," PLOS Computational Biology, Public Library of Science, vol. 4(5), pages 1-9, May.
  • Handle: RePEc:plo:pcbi00:1000085
    DOI: 10.1371/journal.pcbi.1000085
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000085
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000085&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Javier F. Medina & William L. Nores & Michael D. Mauk, 2002. "Inhibition of climbing fibres is a signal for the extinction of conditioned eyelid responses," Nature, Nature, vol. 416(6878), pages 330-333, March.
    2. Marc O. Ernst & Martin S. Banks, 2002. "Humans integrate visual and haptic information in a statistically optimal fashion," Nature, Nature, vol. 415(6870), pages 429-433, January.
    3. Leslie C. Osborne & Stephen G. Lisberger & William Bialek, 2005. "A sensory source for motor variation," Nature, Nature, vol. 437(7057), pages 412-416, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seth W. Egger & Stephen G. Lisberger, 2022. "Neural structure of a sensory decoder for motor control," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Simon Weiler & Vahid Rahmati & Marcel Isstas & Johann Wutke & Andreas Walter Stark & Christian Franke & Jürgen Graf & Christian Geis & Otto W. Witte & Mark Hübener & Jürgen Bolz & Troy W. Margrie & Kn, 2024. "A primary sensory cortical interareal feedforward inhibitory circuit for tacto-visual integration," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    3. Catarina Mendonça & Pietro Mandelli & Ville Pulkki, 2016. "Modeling the Perception of Audiovisual Distance: Bayesian Causal Inference and Other Models," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-18, December.
    4. Jacques Pesnot Lerousseau & Cesare V. Parise & Marc O. Ernst & Virginie Wassenhove, 2022. "Multisensory correlation computations in the human brain identified by a time-resolved encoding model," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Kenta Tominaga & André Lee & Eckart Altenmüller & Fumio Miyazaki & Shinichi Furuya, 2016. "Kinematic Origins of Motor Inconsistency in Expert Pianists," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-15, August.
    7. Marine Hainguerlot & Thibault Gajdos & Jean-Christophe Vergnaud & Vincent de Gardelle, 2023. "How Overconfidence Bias Influences Suboptimality in Perceptual Decision Making," PSE-Ecole d'économie de Paris (Postprint) hal-04197403, HAL.
    8. Caroline Haimerl & Douglas A. Ruff & Marlene R. Cohen & Cristina Savin & Eero P. Simoncelli, 2023. "Targeted V1 comodulation supports task-adaptive sensory decisions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Adam N Sanborn & Ulrik R Beierholm, 2016. "Fast and Accurate Learning When Making Discrete Numerical Estimates," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-28, April.
    10. Patricia Besson & Christophe Bourdin & Lionel Bringoux, 2011. "A Comprehensive Model of Audiovisual Perception: Both Percept and Temporal Dynamics," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-11, August.
    11. Anthony Renard & Evan R. Harrell & Brice Bathellier, 2022. "Olfactory modulation of barrel cortex activity during active whisking and passive whisker stimulation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Wendy J Adams, 2016. "The Development of Audio-Visual Integration for Temporal Judgements," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-17, April.
    13. Tim Genewein & Eduard Hez & Zeynab Razzaghpanah & Daniel A Braun, 2015. "Structure Learning in Bayesian Sensorimotor Integration," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-27, August.
    14. Xiaochen Zhang & Lingling Jin & Jie Zhao & Jiazhen Li & Ding-Bang Luh & Tiansheng Xia, 2022. "The Influences of Different Sensory Modalities and Cognitive Loads on Walking Navigation: A Preliminary Study," Sustainability, MDPI, vol. 14(24), pages 1-14, December.
    15. Johannes Burge & Priyank Jaini, 2017. "Accuracy Maximization Analysis for Sensory-Perceptual Tasks: Computational Improvements, Filter Robustness, and Coding Advantages for Scaled Additive Noise," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-32, February.
    16. Yingjie Lai & Chaemoon Yoo & Xiaomin Zhou & Younghwan Pan, 2023. "Elements of Food Service Design for Low-Carbon Tourism-Based on Dine-In Tourist Behavior and Attitudes in China," Sustainability, MDPI, vol. 15(9), pages 1-21, May.
    17. Florent Meyniel & Maxime Maheu & Stanislas Dehaene, 2016. "Human Inferences about Sequences: A Minimal Transition Probability Model," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-26, December.
    18. Brocas, Isabelle & Carrillo, Juan D., 2012. "From perception to action: An economic model of brain processes," Games and Economic Behavior, Elsevier, vol. 75(1), pages 81-103.
    19. Jean-François Patri & Pascal Perrier & Jean-Luc Schwartz & Julien Diard, 2018. "What drives the perceptual change resulting from speech motor adaptation? Evaluation of hypotheses in a Bayesian modeling framework," PLOS Computational Biology, Public Library of Science, vol. 14(1), pages 1-38, January.
    20. Florent Meyniel, 2020. "Brain dynamics for confidence-weighted learning," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-27, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.