IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002979.html
   My bibliography  Save this article

Processing of Multi-dimensional Sensorimotor Information in the Spinal and Cerebellar Neuronal Circuitry: A New Hypothesis

Author

Listed:
  • Anton Spanne
  • Henrik Jörntell

Abstract

Why are sensory signals and motor command signals combined in the neurons of origin of the spinocerebellar pathways and why are the granule cells that receive this input thresholded with respect to their spike output? In this paper, we synthesize a number of findings into a new hypothesis for how the spinocerebellar systems and the cerebellar cortex can interact to support coordination of our multi-segmented limbs and bodies. A central idea is that recombination of the signals available to the spinocerebellar neurons can be used to approximate a wide array of functions including the spatial and temporal dependencies between limb segments, i.e. information that is necessary in order to achieve coordination. We find that random recombination of sensory and motor signals is not a good strategy since, surprisingly, the number of granule cells severely limits the number of recombinations that can be represented within the cerebellum. Instead, we propose that the spinal circuitry provides useful recombinations, which can be described as linear projections through aspects of the multi-dimensional sensorimotor input space. Granule cells, potentially with the aid of differentiated thresholding from Golgi cells, enhance the utility of these projections by allowing the Purkinje cell to establish piecewise-linear approximations of non-linear functions. Our hypothesis provides a novel view on the function of the spinal circuitry and cerebellar granule layer, illustrating how the coordinating functions of the cerebellum can be crucially supported by the recombinations performed by the neurons of the spinocerebellar systems. Author Summary: The movement control of the brain excels in the seamless coordination of our multi-segmented limbs and bodies and in this respect the brain widely outperforms the most advanced technical systems. So far, however, there is little knowledge about the neuronal circuitry mechanisms by which this coordination could be achieved. The present paper makes a synthesis of some recent findings of cerebellar neuronal circuitry functions and spinocerebellar systems to introduce a novel hypothesis of how the cerebellar and spinal cord neuronal networks together establish signals that form a basis for coordination control in the mammalian central nervous system. The hypothesis takes into account some recent, surprising findings about cerebellar granule cell function and explains some long-standing enigmas concerning the structure of and information mediated by the spinocerebellar pathways. It describes some interesting parallels between the spinocerebellar network and Artificial Neural Networks (ANNs), and capitalizes on some of the major conclusions from ANN studies to explain the biological observations.

Suggested Citation

  • Anton Spanne & Henrik Jörntell, 2013. "Processing of Multi-dimensional Sensorimotor Information in the Spinal and Cerebellar Neuronal Circuitry: A New Hypothesis," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-13, March.
  • Handle: RePEc:plo:pcbi00:1002979
    DOI: 10.1371/journal.pcbi.1002979
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002979
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002979&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002979?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Per Petersson & Alexandra Waldenström & Christer Fåhraeus & Jens Schouenborg, 2003. "Spontaneous muscle twitches during sleep guide spinal self-organization," Nature, Nature, vol. 424(6944), pages 72-75, July.
    2. Ede A. Rancz & Taro Ishikawa & Ian Duguid & Paul Chadderton & Séverine Mahon & Michael Häusser, 2007. "High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons," Nature, Nature, vol. 450(7173), pages 1245-1248, December.
    3. Paul Chadderton & Troy W. Margrie & Michael Häusser, 2004. "Integration of quanta in cerebellar granule cells during sensory processing," Nature, Nature, vol. 428(6985), pages 856-860, April.
    4. Stephen G. Brickley & Victoria Revilla & Stuart G. Cull-Candy & William Wisden & Mark Farrant, 2001. "Adaptive regulation of neuronal excitability by a voltage- independent potassium conductance," Nature, Nature, vol. 409(6816), pages 88-92, January.
    5. John Porrill & Paul Dean, 2008. "Silent Synapses, LTP, and the Indirect Parallel-Fibre Pathway: Computational Consequences of Optimal Cerebellar Noise-Processing," PLOS Computational Biology, Public Library of Science, vol. 4(5), pages 1-9, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashok Litwin-Kumar & Maurice J Chacron & Brent Doiron, 2012. "The Spatial Structure of Stimuli Shapes the Timescale of Correlations in Population Spiking Activity," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-15, September.
    2. Vijayalakshmi Santhakumar & Pratap Meera & Movses H Karakossian & Thomas S Otis, 2013. "A Reinforcing Circuit Action of Extrasynaptic GABAA Receptor Modulators on Cerebellar Granule Cell Inhibition," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-15, August.
    3. Claudia Clopath & Jean-Pierre Nadal & Nicolas Brunel, 2012. "Storage of Correlated Patterns in Standard and Bistable Purkinje Cell Models," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-10, April.
    4. Lucas A Mongiat & M Soledad Espósito & Gabriela Lombardi & Alejandro F Schinder, 2009. "Reliable Activation of Immature Neurons in the Adult Hippocampus," PLOS ONE, Public Library of Science, vol. 4(4), pages 1-11, April.
    5. Claudia Clopath & Nicolas Brunel, 2013. "Optimal Properties of Analog Perceptrons with Excitatory Weights," PLOS Computational Biology, Public Library of Science, vol. 9(2), pages 1-6, February.
    6. Matthias Kohler & Philipp Stratmann & Florian Röhrbein & Alois Knoll & Alin Albu-Schäffer & Henrik Jörntell, 2020. "Biological data questions the support of the self inhibition required for pattern generation in the half center model," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-17, September.
    7. Shyam Diwakar & Paola Lombardo & Sergio Solinas & Giovanni Naldi & Egidio D'Angelo, 2011. "Local Field Potential Modeling Predicts Dense Activation in Cerebellar Granule Cells Clusters under LTP and LTD Control," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-13, July.
    8. Lloyd E. Russell & Mehmet Fişek & Zidan Yang & Lynn Pei Tan & Adam M. Packer & Henry W. P. Dalgleish & Selmaan N. Chettih & Christopher D. Harvey & Michael Häusser, 2024. "The influence of cortical activity on perception depends on behavioral state and sensory context," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.