IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/2004037.html
   My bibliography  Save this article

The neural system of metacognition accompanying decision-making in the prefrontal cortex

Author

Listed:
  • Lirong Qiu
  • Jie Su
  • Yinmei Ni
  • Yang Bai
  • Xuesong Zhang
  • Xiaoli Li
  • Xiaohong Wan

Abstract

Decision-making is usually accompanied by metacognition, through which a decision maker monitors uncertainty regarding a decision and may then consequently revise the decision. These metacognitive processes can occur prior to or in the absence of feedback. However, the neural mechanisms of metacognition remain controversial. One theory proposes an independent neural system for metacognition in the prefrontal cortex (PFC); the other, that metacognitive processes coincide and overlap with the systems used for the decision-making process per se. In this study, we devised a novel “decision–redecision” paradigm to investigate the neural metacognitive processes involved in redecision as compared to the initial decision-making process. The participants underwent a perceptual decision-making task and a rule-based decision-making task during functional magnetic resonance imaging (fMRI). We found that the anterior PFC, including the dorsal anterior cingulate cortex (dACC) and lateral frontopolar cortex (lFPC), were more extensively activated after the initial decision. The dACC activity in redecision positively scaled with decision uncertainty and correlated with individual metacognitive uncertainty monitoring abilities—commonly occurring in both tasks—indicating that the dACC was specifically involved in decision uncertainty monitoring. In contrast, the lFPC activity seen in redecision processing was scaled with decision uncertainty reduction and correlated with individual accuracy changes—positively in the rule-based decision-making task and negatively in the perceptual decision-making task. Our results show that the lFPC was specifically involved in metacognitive control of decision adjustment and was subject to different control demands of the tasks. Therefore, our findings support that a separate neural system in the PFC is essentially involved in metacognition and further, that functions of the PFC in metacognition are dissociable.Author summary: Decision-making is often accompanied by a sense of uncertainty regarding the outcome. In many situations, there is no explicit feedback or cue to indicate whether the decision is correct or not. Fortunately, our brain can evaluate decision uncertainty using the internal signals and subsequently make appropriate adjustments to initial decisions. The process of considering the outcome of a decision and whether a decision should be adjusted is called metacognition, and it tends to be automatically induced. Thus, decision-making is usually accompanied by metacognition, and the two processes are inevitably coupled. However, the neural systems supporting metacognitive processing remain unclear and have often been misattributed to the neural system of the decision-making process per se. Here, we have analyzed this process in several volunteers by imaging the brain activity in specific regions while they performed Sudoku and random-dot motion (RDM) tasks. Our results suggest the existence of a neural system located in the prefrontal cortex (PFC) mainly involved in metacognition and independent from the neural system of decision-making.

Suggested Citation

  • Lirong Qiu & Jie Su & Yinmei Ni & Yang Bai & Xuesong Zhang & Xiaoli Li & Xiaohong Wan, 2018. "The neural system of metacognition accompanying decision-making in the prefrontal cortex," PLOS Biology, Public Library of Science, vol. 16(4), pages 1-27, April.
  • Handle: RePEc:plo:pbio00:2004037
    DOI: 10.1371/journal.pbio.2004037
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2004037
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.2004037&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.2004037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arbora Resulaj & Roozbeh Kiani & Daniel M. Wolpert & Michael N. Shadlen, 2009. "Changes of mind in decision-making," Nature, Nature, vol. 461(7261), pages 263-266, September.
    2. Daniel Bor & David J Schwartzman & Adam B Barrett & Anil K Seth, 2017. "Theta-burst transcranial magnetic stimulation to the prefrontal or parietal cortex does not impair metacognitive visual awareness," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-20, February.
    3. Nathaniel D. Daw & John P. O'Doherty & Peter Dayan & Ben Seymour & Raymond J. Dolan, 2006. "Cortical substrates for exploratory decisions in humans," Nature, Nature, vol. 441(7095), pages 876-879, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bob Bastian & Antonella Zucchella, 2022. "Entrepreneurial metacognition: a study on nascent entrepreneurs," International Entrepreneurship and Management Journal, Springer, vol. 18(4), pages 1775-1805, December.
    2. Curt B. Moore & Nancy H. McIntyre & Stephen E. Lanivich, 2021. "ADHD-Related Neurodiversity and the Entrepreneurial Mindset," Entrepreneurship Theory and Practice, , vol. 45(1), pages 64-91, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.
    2. Shi, Yuwei & Herniman, John, 2023. "The role of expectation in innovation evolution: Exploring hype cycles," Technovation, Elsevier, vol. 119(C).
    3. Sashittal, Hemant C. & Sriramachandramurthy, Rajendran & Hodis, Monica, 2012. "Targeting college students on Facebook? How to stop wasting your money," Business Horizons, Elsevier, vol. 55(5), pages 495-507.
    4. Peter S. Riefer & Bradley C. Love, 2015. "Unfazed by Both the Bull and Bear: Strategic Exploration in Dynamic Environments," Games, MDPI, vol. 6(3), pages 1-11, August.
    5. Zohar Z Bronfman & Noam Brezis & Marius Usher, 2016. "Non-monotonic Temporal-Weighting Indicates a Dynamically Modulated Evidence-Integration Mechanism," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-21, February.
    6. Makoto Naruse & Eiji Yamamoto & Takashi Nakao & Takuma Akimoto & Hayato Saigo & Kazuya Okamura & Izumi Ojima & Georg Northoff & Hirokazu Hori, 2018. "Why is the environment important for decision making? Local reservoir model for choice-based learning," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-17, October.
    7. Manuel Rausch & Michael Zehetleitner, 2019. "The folded X-pattern is not necessarily a statistical signature of decision confidence," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-18, October.
    8. Christina Fang & Daniel Levinthal, 2009. "Near-Term Liability of Exploitation: Exploration and Exploitation in Multistage Problems," Organization Science, INFORMS, vol. 20(3), pages 538-551, June.
    9. Hu, Yingyao & Kayaba, Yutaka & Shum, Matthew, 2013. "Nonparametric learning rules from bandit experiments: The eyes have it!," Games and Economic Behavior, Elsevier, vol. 81(C), pages 215-231.
    10. Adrian M Haith & David M Huberdeau & John W Krakauer, 2015. "Hedging Your Bets: Intermediate Movements as Optimal Behavior in the Context of an Incomplete Decision," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-21, March.
    11. Andrea Insabato & Mario Pannunzi & Gustavo Deco, 2017. "Multiple Choice Neurodynamical Model of the Uncertain Option Task," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-29, January.
    12. Jean Daunizeau & Hanneke E M den Ouden & Matthias Pessiglione & Stefan J Kiebel & Klaas E Stephan & Karl J Friston, 2010. "Observing the Observer (I): Meta-Bayesian Models of Learning and Decision-Making," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-10, December.
    13. Elyse H Norton & Stephen M Fleming & Nathaniel D Daw & Michael S Landy, 2017. "Suboptimal Criterion Learning in Static and Dynamic Environments," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-28, January.
    14. Ayaka Kato & Kenji Morita, 2016. "Forgetting in Reinforcement Learning Links Sustained Dopamine Signals to Motivation," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-41, October.
    15. Elise Payzan-LeNestour & Peter Bossaerts, 2011. "Risk, Unexpected Uncertainty, and Estimation Uncertainty: Bayesian Learning in Unstable Settings," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-14, January.
    16. Pérez-Centeno, Victor, 2018. "Brain-driven entrepreneurship research: Expanded review and research agenda towards entrepreneurial enhancement," Working Papers 02/18, Institut für Mittelstandsforschung (IfM) Bonn.
    17. Oded Berger-Tal & Jonathan Nathan & Ehud Meron & David Saltz, 2014. "The Exploration-Exploitation Dilemma: A Multidisciplinary Framework," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-8, April.
    18. Ian Krajbich & Todd Hare & Björn Bartling & Yosuke Morishima & Ernst Fehr, 2015. "A Common Mechanism Underlying Food Choice and Social Decisions," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-24, October.
    19. Maime Guan & Ryan Stokes & Joachim Vandekerckhove & Michael D. Lee, 2020. "A cognitive modeling analysis of risk in sequential choice tasks}," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 15(5), pages 823-850, September.
    20. repec:cup:judgdm:v:8:y:2013:i:5:p:527-539 is not listed on IDEAS
    21. Kiyohito Iigaya & Sanghyun Yi & Iman A. Wahle & Sandy Tanwisuth & Logan Cross & John P. O’Doherty, 2023. "Neural mechanisms underlying the hierarchical construction of perceived aesthetic value," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:2004037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.