IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v9y2022i1d10.1057_s41599-022-01267-5.html
   My bibliography  Save this article

Investigating patterns of change, stability, and interaction among scientific disciplines using embeddings

Author

Listed:
  • Barbara McGillivray

    (King’s College London)

  • Gard B. Jenset

    (Springer Nature)

  • Khalid Salama

    (University of Kent)

  • Donna Schut

    (Google)

Abstract

Multi-disciplinary and inter-disciplinary collaboration can be an appropriate response to tackling the increasingly complex problems faced by today’s society. Scientific disciplines are not rigidly defined entities and their profiles change over time. No previous study has investigated multiple disciplinarity (i.e. the complex interaction between disciplines, whether of a multidisciplinary or an interdisciplinary nature) at scale with quantitative methods, and the change in the profile of disciplines over time. This article explores a dataset of over 21 million articles published in 8400 academic journals between 1990 and 2019 and proposes a new scalable data-driven approach to multiple disciplinarity. This approach can be used to study the relationship between disciplines over time. By creating vector representations (embeddings) of disciplines and measuring the geometric closeness between the embeddings, the analysis shows that the similarity between disciplines has increased over time, but overall the size of their neighbourhood (the number of neighbouring disciplines) has decreased, pointing to disciplines being more similar to each other over time, while at the same time displaying increased specialisation. We interpret this as a pattern of global convergence combined with local specialisation. Our approach is also able to track the development of disciplines’ profiles over time, detecting those that changed the most in the time period considered, and to treat disciplines as compositional units, where relationships can be expressed as analogy equations of the form Discipline1 + Discipline2 ≈ Discipline3. These findings can help researchers, academic institutions and organizations to better understand and react to the dynamics of scientific research, and can support the education sector in designing curricula or in the recruitment of academics and researchers.

Suggested Citation

  • Barbara McGillivray & Gard B. Jenset & Khalid Salama & Donna Schut, 2022. "Investigating patterns of change, stability, and interaction among scientific disciplines using embeddings," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-15, December.
  • Handle: RePEc:pal:palcom:v:9:y:2022:i:1:d:10.1057_s41599-022-01267-5
    DOI: 10.1057/s41599-022-01267-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-022-01267-5
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-022-01267-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Loet Leydesdorff & Caroline S. Wagner & Lutz Bornmann, 2018. "Betweenness and diversity in journal citation networks as measures of interdisciplinarity—A tribute to Eugene Garfield," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 567-592, February.
    2. Gohar Feroz Khan & Sungjoon Lee & Ji Young Park & Han Woo Park, 2016. "Theories in communication science: a structural analysis using webometrics and social network approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 531-557, August.
    3. Tomaz Bartol & Gordana Budimir & Primoz Juznic & Karmen Stopar, 2016. "Mapping and classification of agriculture in Web of Science: other subject categories and research fields may benefit," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 979-996, November.
    4. J. Gower, 1975. "Generalized procrustes analysis," Psychometrika, Springer;The Psychometric Society, vol. 40(1), pages 33-51, March.
    5. Ismael Rafols & Martin Meyer, 2010. "Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 263-287, February.
    6. Sitaram Devarakonda & Dmitriy Korobskiy & Tandy Warnow & George Chacko, 2020. "Viewing computer science through citation analysis: Salton and Bergmark Redux," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 271-287, October.
    7. Diego Kozlowski & Jennifer Dusdal & Jun Pang & Andreas Zilian, 2021. "Semantic and relational spaces in science of science: deep learning models for article vectorisation," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5881-5910, July.
    8. Haiko Lietz, 2020. "Drawing impossible boundaries: field delineation of Social Network Science," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2841-2876, December.
    9. Yi Zhang & Fen Zhao & Jianguo Lu, 2019. "P2V: large-scale academic paper embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 399-432, October.
    10. Zhigang Hu & Wencan Tian & Jiacheng Guo & Xianwen Wang, 2020. "Mapping research collaborations in different countries and regions: 1980–2019," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 729-745, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zemaityte, Vejune & Karjus, Andres & Rohn, Ulrike & Schich, Maximilian & Ibrus, Indrek, 2023. "Quantifying the global film festival circuit: Networks, diversity, and public value creation," SocArXiv g9w4b, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yury Dranev & Maxim Kotsemir & Boris Syomin, 2018. "Diversity of research publications: relation to agricultural productivity and possible implications for STI policy," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1565-1587, September.
    2. Kim, Hyeyoung & Park, Hyelin & Song, Min, 2022. "Developing a topic-driven method for interdisciplinarity analysis," Journal of Informetrics, Elsevier, vol. 16(2).
    3. Hamid R. Jamali & Ghasem Azadi-Ahmadabadi & Saeid Asadi, 2018. "Interdisciplinary relations of converging technologies: Nano–Bio–Info–Cogno (NBIC)," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 1055-1073, August.
    4. Alfonso Ávila-Robinson & Cristian Mejia & Shintaro Sengoku, 2021. "Are bibliometric measures consistent with scientists’ perceptions? The case of interdisciplinarity in research," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7477-7502, September.
    5. Keungoui Kim & Dieter F. Kogler & Sira Maliphol, 2024. "Identifying interdisciplinary emergence in the science of science: combination of network analysis and BERTopic," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.
    6. Lin Zhang & Beibei Sun & Zaida Chinchilla-Rodríguez & Lixin Chen & Ying Huang, 2018. "Interdisciplinarity and collaboration: on the relationship between disciplinary diversity in departmental affiliations and reference lists," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 271-291, October.
    7. Fan, Yangliu & Lehmann, Sune & Blok, Anders, 2022. "Extracting the interdisciplinary specialty structures in social media data-based research: A clustering-based network approach," Journal of Informetrics, Elsevier, vol. 16(3).
    8. Loet Leydesdorff & Inga Ivanova, 2021. "The measurement of “interdisciplinarity” and “synergy” in scientific and extra‐scientific collaborations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(4), pages 387-402, April.
    9. Leydesdorff, Loet & Wagner, Caroline S. & Bornmann, Lutz, 2019. "Interdisciplinarity as diversity in citation patterns among journals: Rao-Stirling diversity, relative variety, and the Gini coefficient," Journal of Informetrics, Elsevier, vol. 13(1), pages 255-269.
    10. Qian Yu & Rui Tao & Shan Jiang, 2023. "Exploring the evolution of interdisciplinary citation network by the colored network motifs: the case of Perovskite Materials," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4421-4446, August.
    11. Ronald Rousseau, 2018. "The repeat rate: from Hirschman to Stirling," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 645-653, July.
    12. Yi Bu & Mengyang Li & Weiye Gu & Win‐bin Huang, 2021. "Topic diversity: A discipline scheme‐free diversity measurement for journals," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(5), pages 523-539, May.
    13. Yiqin Lv & Zheng Xie & Xiaojing Zuo & Yiping Song, 2022. "A multi-view method of scientific paper classification via heterogeneous graph embeddings," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4847-4872, August.
    14. Loet Leydesdorff, 2018. "Diversity and interdisciplinarity: how can one distinguish and recombine disparity, variety, and balance?," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 2113-2121, September.
    15. Giulio Giacomo Cantone, 2024. "How to measure interdisciplinary research? A systemic design for the model of measurement," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(8), pages 4937-4982, August.
    16. Jingjing Ren & Fang Wang & Minglu Li, 2023. "Dynamics and characteristics of interdisciplinary research in scientific breakthroughs: case studies of Nobel-winning research in the past 120 years," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4383-4419, August.
    17. Wooseok Jang & Heeyeul Kwon & Yongtae Park & Hakyeon Lee, 2018. "Predicting the degree of interdisciplinarity in academic fields: the case of nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 231-254, July.
    18. Diego Chavarro & Puay Tang & Ismael Rafols, 2014. "Interdisciplinarity and research on local issues: evidence from a developing country," Research Evaluation, Oxford University Press, vol. 23(3), pages 195-209.
    19. Su, Hsin-Ning & Moaniba, Igam M., 2017. "Investigating the dynamics of interdisciplinary evolution in technology developments," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 12-23.
    20. Loet Leydesdorff & Dieter Franz Kogler & Bowen Yan, 2017. "Mapping patent classifications: portfolio and statistical analysis, and the comparison of strengths and weaknesses," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1573-1591, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:9:y:2022:i:1:d:10.1057_s41599-022-01267-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.