IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v125y2020i1d10.1007_s11192-020-03624-0.html
   My bibliography  Save this article

Viewing computer science through citation analysis: Salton and Bergmark Redux

Author

Listed:
  • Sitaram Devarakonda

    (Netelabs, NET ESolutions Corporation
    Randstad USA)

  • Dmitriy Korobskiy

    (Netelabs, NET ESolutions Corporation)

  • Tandy Warnow

    (University of Illinois Urbana-Champaign)

  • George Chacko

    (Netelabs, NET ESolutions Corporation)

Abstract

Computer science has experienced dramatic growth and diversification over the last twenty years. Towards a current understanding of the structure of this discipline, we analyze a large sample of the computer science literature from the DBLP database. For insight on the features of this cohort and the relationship within its components, we have constructed article level clusters based on either direct citations or co-citations, and reconciled them with major and minor subject categories in the All Science Journal Classification. We describe complementary insights from clustering by direct citation and co-citation, and both point to the increase in computer science publications and their scope. Our analysis reveals cross-category clusters, some that interact with external fields, such as the biological sciences, while others remain inward looking. Overall, we document an increase in computer science publications and their scope.

Suggested Citation

  • Sitaram Devarakonda & Dmitriy Korobskiy & Tandy Warnow & George Chacko, 2020. "Viewing computer science through citation analysis: Salton and Bergmark Redux," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 271-287, October.
  • Handle: RePEc:spr:scient:v:125:y:2020:i:1:d:10.1007_s11192-020-03624-0
    DOI: 10.1007/s11192-020-03624-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-020-03624-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-020-03624-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Qi & Waltman, Ludo, 2016. "Large-scale analysis of the accuracy of the journal classification systems of Web of Science and Scopus," Journal of Informetrics, Elsevier, vol. 10(2), pages 347-364.
    2. Ludo Waltman & Nees Jan van Eck, 2012. "A new methodology for constructing a publication‐level classification system of science," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(12), pages 2378-2392, December.
    3. Lovro Šubelj & Nees Jan van Eck & Ludo Waltman, 2016. "Clustering Scientific Publications Based on Citation Relations: A Systematic Comparison of Different Methods," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-23, April.
    4. M. M. Kessler, 1965. "Comparison of the results of bibliographic coupling and analytic subject indexing," American Documentation, Wiley Blackwell, vol. 16(3), pages 223-233, July.
    5. Henry Small, 1973. "Co‐citation in the scientific literature: A new measure of the relationship between two documents," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 24(4), pages 265-269, July.
    6. Perianes-Rodriguez, Antonio & Ruiz-Castillo, Javier, 2017. "A comparison of the Web of Science and publication-level classification systems of science," Journal of Informetrics, Elsevier, vol. 11(1), pages 32-45.
    7. Kevin W. Boyack, 2017. "Investigating the effect of global data on topic detection," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 999-1015, May.
    8. Kevin W. Boyack & Richard Klavans, 2010. "Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    9. Ludo Waltman & Nees Jan Eck, 2012. "A new methodology for constructing a publication-level classification system of science," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(12), pages 2378-2392, December.
    10. Richard Klavans & Kevin W. Boyack, 2017. "Which Type of Citation Analysis Generates the Most Accurate Taxonomy of Scientific and Technical Knowledge?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(4), pages 984-998, April.
    11. Shu, Fei & Julien, Charles-Antoine & Zhang, Lin & Qiu, Junping & Zhang, Jing & Larivière, Vincent, 2019. "Comparing journal and paper level classifications of science," Journal of Informetrics, Elsevier, vol. 13(1), pages 202-225.
    12. Kevin W Boyack & David Newman & Russell J Duhon & Richard Klavans & Michael Patek & Joseph R Biberstine & Bob Schijvenaars & André Skupin & Nianli Ma & Katy Börner, 2011. "Clustering More than Two Million Biomedical Publications: Comparing the Accuracies of Nine Text-Based Similarity Approaches," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-11, March.
    13. Boyack, Kevin W. & Patek, Michael & Ungar, Lyle H. & Yoon, Patrick & Klavans, Richard, 2014. "Classification of individual articles from all of science by research level," Journal of Informetrics, Elsevier, vol. 8(1), pages 1-12.
    14. Scott Emmons & Stephen Kobourov & Mike Gallant & Katy Börner, 2016. "Analysis of Network Clustering Algorithms and Cluster Quality Metrics at Scale," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-18, July.
    15. Kevin W. Boyack & Richard Klavans, 2010. "Co‐citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    16. Éric Archambault & David Campbell & Yves Gingras & Vincent Larivière, 2009. "Comparing bibliometric statistics obtained from the Web of Science and Scopus," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(7), pages 1320-1326, July.
    17. Tanmoy Chakraborty, 2018. "Role of interdisciplinarity in computer sciences: quantification, impact and life trajectory," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1011-1029, March.
    18. Kevin W. Boyack & Henry Small & Richard Klavans, 2013. "Improving the accuracy of co-citation clustering using full text," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(9), pages 1759-1767, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barbara McGillivray & Gard B. Jenset & Khalid Salama & Donna Schut, 2022. "Investigating patterns of change, stability, and interaction among scientific disciplines using embeddings," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-15, December.
    2. Xiaoguang Wang & Hongyu Wang & Han Huang, 2021. "Evolutionary exploration and comparative analysis of the research topic networks in information disciplines," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 4991-5017, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sjögårde, Peter & Ahlgren, Per, 2018. "Granularity of algorithmically constructed publication-level classifications of research publications: Identification of topics," Journal of Informetrics, Elsevier, vol. 12(1), pages 133-152.
    2. Paul Donner, 2021. "Validation of the Astro dataset clustering solutions with external data," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1619-1645, February.
    3. Yun, Jinhyuk, 2022. "Generalization of bibliographic coupling and co-citation using the node split network," Journal of Informetrics, Elsevier, vol. 16(2).
    4. Fei Shu & Yue Ma & Junping Qiu & Vincent Larivière, 2020. "Classifications of science and their effects on bibliometric evaluations," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2727-2744, December.
    5. Jochen Gläser & Wolfgang Glänzel & Andrea Scharnhorst, 2017. "Same data—different results? Towards a comparative approach to the identification of thematic structures in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 981-998, May.
    6. Lin Zhang & Beibei Sun & Fei Shu & Ying Huang, 2022. "Comparing paper level classifications across different methods and systems: an investigation of Nature publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7633-7651, December.
    7. Li, Menghui & Yang, Liying & Zhang, Huina & Shen, Zhesi & Wu, Chensheng & Wu, Jinshan, 2017. "Do mathematicians, economists and biomedical scientists trace large topics more strongly than physicists?," Journal of Informetrics, Elsevier, vol. 11(2), pages 598-607.
    8. Michel Zitt, 2015. "Meso-level retrieval: IR-bibliometrics interplay and hybrid citation-words methods in scientific fields delineation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2223-2245, March.
    9. Carusi, Chiara & Bianchi, Giuseppe, 2019. "Scientific community detection via bipartite scholar/journal graph co-clustering," Journal of Informetrics, Elsevier, vol. 13(1), pages 354-386.
    10. Yun, Jinhyuk & Ahn, Sejung & Lee, June Young, 2020. "Return to basics: Clustering of scientific literature using structural information," Journal of Informetrics, Elsevier, vol. 14(4).
    11. Matthias Held & Grit Laudel & Jochen Gläser, 2021. "Challenges to the validity of topic reconstruction," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4511-4536, May.
    12. Baccini, Federica & Barabesi, Lucio & Baccini, Alberto & Khelfaoui, Mahdi & Gingras, Yves, 2022. "Similarity network fusion for scholarly journals," Journal of Informetrics, Elsevier, vol. 16(1).
    13. Rons, Nadine, 2018. "Bibliometric approximation of a scientific specialty by combining key sources, title words, authors and references," Journal of Informetrics, Elsevier, vol. 12(1), pages 113-132.
    14. Urdiales, Cristina & Guzmán, Eduardo, 2024. "An automatic and association-based procedure for hierarchical publication subject categorization," Journal of Informetrics, Elsevier, vol. 18(1).
    15. Ignacio Rodríguez-Rodríguez & José-Víctor Rodríguez & Niloofar Shirvanizadeh & Andrés Ortiz & Domingo-Javier Pardo-Quiles, 2021. "Applications of Artificial Intelligence, Machine Learning, Big Data and the Internet of Things to the COVID-19 Pandemic: A Scientometric Review Using Text Mining," IJERPH, MDPI, vol. 18(16), pages 1-29, August.
    16. Peter Sjögårde & Fereshteh Didegah, 2022. "The association between topic growth and citation impact of research publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 1903-1921, April.
    17. Bornmann, Lutz & Haunschild, Robin, 2022. "Empirical analysis of recent temporal dynamics of research fields: Annual publications in chemistry and related areas as an example," Journal of Informetrics, Elsevier, vol. 16(2).
    18. Gabriele Sampagnaro, 2023. "Keyword occurrences and journal specialization," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(10), pages 5629-5645, October.
    19. Lovro Šubelj & Nees Jan van Eck & Ludo Waltman, 2016. "Clustering Scientific Publications Based on Citation Relations: A Systematic Comparison of Different Methods," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-23, April.
    20. Xu, Shuo & Hao, Liyuan & Yang, Guancan & Lu, Kun & An, Xin, 2021. "A topic models based framework for detecting and forecasting emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 162(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:125:y:2020:i:1:d:10.1007_s11192-020-03624-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.