IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v8y2021i1d10.1057_s41599-021-00757-2.html
   My bibliography  Save this article

Global urban subway development, construction material stocks, and embodied carbon emissions

Author

Listed:
  • Ruichang Mao

    (University of Southern Denmark)

  • Yi Bao

    (Peking University)

  • Huabo Duan

    (Shenzhen University)

  • Gang Liu

    (University of Southern Denmark)

Abstract

Urban subway system, as an important type of urban transportation infrastructure, can provide mass mobility service and help address urban sustainability challenges such as traffic congestion and air pollution. The continuous construction of subways, however, causes large amounts of construction materials and embodied greenhouse gas (GHG) emissions. In this study, we characterized the patterns of subway development, construction material stocks, and embodied emissions covering all 219 cities in the world in which subways are found by July 2020. The global subway length reached 16,419 km in 2020, and the construction material stocks amounted to 2.5 gigatons, equaling to an embodied emission of 560 megatons. In particular, China’s subway system contributes to ~40% of the total global stocks, with a pattern of moderate and steady stocks growth before 2010 and a rapid expansion afterwards, implying the late-development advantages and infrastructure-based urbanization mode. Our results demonstrated that identifying the spatiotemporal characteristics of subway materials stocks development is imperative for benchmarking future resource demand, informing sustainable subway planning, prospecting urban mining and waste management opportunities and challenges, and mitigating the associated environmental impacts for global GHG emission reduction.

Suggested Citation

  • Ruichang Mao & Yi Bao & Huabo Duan & Gang Liu, 2021. "Global urban subway development, construction material stocks, and embodied carbon emissions," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-11, December.
  • Handle: RePEc:pal:palcom:v:8:y:2021:i:1:d:10.1057_s41599-021-00757-2
    DOI: 10.1057/s41599-021-00757-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-021-00757-2
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-021-00757-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Lei & Wang, Ke & Wang, Shanshan & Zhang, Ruiqin & Tang, Xiaoyan, 2018. "Assessing energy consumption, CO2 and pollutant emissions and health benefits from China's transport sector through 2050," Energy Policy, Elsevier, vol. 116(C), pages 382-396.
    2. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    3. Andreas Gassner & Jakob Lederer & Johann Fellner, 2020. "Material stock development of the transport sector in the city of Vienna," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1364-1378, December.
    4. Li, Shanjun & Liu, Yanyan & Purevjav, Avralt-Od & Yang, Lin, 2019. "Does subway expansion improve air quality?," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 213-235.
    5. Jun, Myung-Jin & Choi, Keechoo & Jeong, Ji-Eun & Kwon, Ki-Hyun & Kim, Hee-Jae, 2015. "Land use characteristics of subway catchment areas and their influence on subway ridership in Seoul," Journal of Transport Geography, Elsevier, vol. 48(C), pages 30-40.
    6. Gao, Tianming & Shen, Lei & Shen, Ming & Liu, Litao & Chen, Fengnan & Gao, Li, 2017. "Evolution and projection of CO2 emissions for China's cement industry from 1980 to 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 522-537.
    7. Tao Wang & Jun Zhou & Ye Yue & Jie Yang & Seiji Hashimoto, 2016. "Weight under Steel Wheels: Material Stock and Flow Analysis of High-Speed Rail in China," Journal of Industrial Ecology, Yale University, vol. 20(6), pages 1349-1359, December.
    8. Gonzalez-Navarro, Marco & Turner, Matthew A., 2018. "Subways and urban growth: Evidence from earth," Journal of Urban Economics, Elsevier, vol. 108(C), pages 85-106.
    9. Wiedenhofer, Dominik & Fishman, Tomer & Lauk, Christian & Haas, Willi & Krausmann, Fridolin, 2019. "Integrating Material Stock Dynamics Into Economy-Wide Material Flow Accounting: Concepts, Modelling, and Global Application for 1900–2050," Ecological Economics, Elsevier, vol. 156(C), pages 121-133.
    10. Kang, Liujiang & Sun, Huijun & Wu, Jianjun & Gao, Ziyou, 2020. "Last train station-skipping, transfer-accessible and energy-efficient scheduling in subway networks," Energy, Elsevier, vol. 206(C).
    11. Niko Heeren & Stefanie Hellweg, 2019. "Tracking Construction Material over Space and Time: Prospective and Geo‐referenced Modeling of Building Stocks and Construction Material Flows," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 253-267, February.
    12. Shi, Hao & Huang, Shaoqing, 2014. "How Much Infrastructure Is Too Much? A New Approach and Evidence from China," World Development, Elsevier, vol. 56(C), pages 272-286.
    13. Christopher Kennedy, 2002. "A comparison of the sustainability of public and private transportation systems: Study of the Greater Toronto Area," Transportation, Springer, vol. 29(4), pages 459-493, November.
    14. Yang, Jun & Chen, Shuai & Qin, Ping & Lu, Fangwen & Liu, Antung A., 2018. "The effect of subway expansions on vehicle congestion: Evidence from Beijing," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 114-133.
    15. Prud'homme, Rémy & Koning, Martin & Lenormand, Luc & Fehr, Anne, 2012. "Public transport congestion costs: The case of the Paris subway," Transport Policy, Elsevier, vol. 21(C), pages 101-109.
    16. Zhang, Jianhua & Xu, Xiaoming & Hong, Liu & Wang, Shuliang & Fei, Qi, 2011. "Networked analysis of the Shanghai subway network, in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4562-4570.
    17. Thi Cuc Nguyen & Tomer Fishman & Alessio Miatto & Hiroki Tanikawa, 2019. "Estimating the Material Stock of Roads: The Vietnamese Case Study," Journal of Industrial Ecology, Yale University, vol. 23(3), pages 663-673, June.
    18. Scott Thacker & Daniel Adshead & Marianne Fay & Stéphane Hallegatte & Mark Harvey & Hendrik Meller & Nicholas O’Regan & Julie Rozenberg & Graham Watkins & Jim W. Hall, 2019. "Infrastructure for sustainable development," Nature Sustainability, Nature, vol. 2(4), pages 324-331, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linlin Duan & Lulu Song & Wanjun Wang & Xiaomei Jian & Reinout Heijungs & Wei-Qiang Chen, 2024. "Urbanization inequality: evidence from vehicle ownership in Chinese cities," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    2. Kunyang Chen & Guobin Zhang & Huanyu Wu & Ruichang Mao & Xiangsheng Chen, 2022. "Uncovering the Carbon Emission Intensity and Reduction Potentials of the Metro Operation Phase: A Case Study in Shenzhen Megacity," IJERPH, MDPI, vol. 20(1), pages 1-20, December.
    3. Lu Zeng & Zinuo Li & Jie Yang & Xinyue Xu, 2022. "CEEMDAN-IPSO-LSTM: A Novel Model for Short-Term Passenger Flow Prediction in Urban Rail Transit Systems," IJERPH, MDPI, vol. 19(24), pages 1-19, December.
    4. Kronnaphat Khumvongsa & Jing Guo & Suthida Theepharaksapan & Hiroaki Shirakawa & Hiroki Tanikawa, 2023. "Uncovering urban transportation infrastructure expansion and sustainability challenge in Bangkok: Insights from a material stock perspective," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 476-490, April.
    5. Charles Gillott & Will Mihkelson & Maud Lanau & Dave Cheshire & Danielle Densley Tingley, 2023. "Developing Regenerate: A circular economy engagement tool for the assessment of new and existing buildings," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 423-435, April.
    6. Lehua Bi & Shaorui Zhou & Jianjie Ke & Xiaoming Song, 2023. "Knowledge-Mapping Analysis of Urban Sustainable Transportation Using CiteSpace," Sustainability, MDPI, vol. 15(2), pages 1-29, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    2. Zhang, Haoran, 2020. "Metro and urban growth: Evidence from China," Journal of Transport Geography, Elsevier, vol. 85(C).
    3. Yizhen Gu & Chang Jiang & Junfu Zhang & Ben Zou, 2021. "Subways and Road Congestion," American Economic Journal: Applied Economics, American Economic Association, vol. 13(2), pages 83-115, April.
    4. Bradley Kloostra & Benjamin Makarchuk & Shoshanna Saxe, 2022. "Bottom‐up estimation of material stocks and flows in Toronto's road network," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 875-890, June.
    5. Brent, Daniel & Beland, Louis-Philippe, 2020. "Traffic congestion, transportation policies, and the performance of first responders," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    6. Shuntian Xu & Huaxuan Wang & Xin Tian & Tao Wang & Hiroki Tanikawa, 2022. "From efficiency to equity: Changing patterns of China's regional transportation systems from an in‐use steel stocks perspective," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 548-561, April.
    7. Jean-Philippe Meloche & Vincent Trotignon & François Vaillancourt, 2021. "Densification ou prolongement des réseaux de transport structurants ? Une recension des écrits sur les coûts et les bénéfices attendus," CIRANO Project Reports 2020rp-28, CIRANO.
    8. Qiao Wang & Xiuyan Liu & Fan Zhang & Tao Hu, 2022. "Subways and the Diffusion of Knowledge: Evidence from China," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 30(4), pages 60-99, July.
    9. Virág, Doris & Wiedenhofer, Dominik & Baumgart, André & Matej, Sarah & Krausmann, Fridolin & Min, Jihoon & Rao, Narasimha D. & Haberl, Helmut, 2022. "How much infrastructure is required to support decent mobility for all? An exploratory assessment," Ecological Economics, Elsevier, vol. 200(C).
    10. Francis Rathinam & Sayak Khatua & Zeba Siddiqui & Manya Malik & Pallavi Duggal & Samantha Watson & Xavier Vollenweider, 2021. "Using big data for evaluating development outcomes: A systematic map," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(3), September.
    11. Gaduh, Arya & Gračner, Tadeja & Rothenberg, Alexander D., 2022. "Life in the slow lane: Unintended consequences of public transit in Jakarta," Journal of Urban Economics, Elsevier, vol. 128(C).
    12. Zhang, Hui & Zhan, Bo & Ouyang, Min, 2024. "Enhancing accessibility through rail transit in congested urban areas: A cross-regional analysis," Journal of Transport Geography, Elsevier, vol. 115(C).
    13. Nguyen, Thi Cuc & Miatto, Alessio & Kim, Junbeum, 2024. "Material services in an emerging economy: Tracking resource utilization in Vietnam's shelter, thermal comfort, and road transportation," Ecological Economics, Elsevier, vol. 220(C).
    14. Liang Yuan & Weisheng Lu & Yijie Wu, 2023. "Characterizing the spatiotemporal evolution of building material stock in China's Greater Bay Area: A statistical regression method," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1553-1566, December.
    15. Joris Baars & Mohammad Ali Rajaeifar & Oliver Heidrich, 2022. "Quo vadis MFA? Integrated material flow analysis to support material efficiency," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1487-1503, August.
    16. Liu, Xianmei & Peng, Rui & Zhong, Chao & Wang, Mingyue & Guo, Pibin, 2021. "What drives the temporal and spatial differences of CO2 emissions in the transport sector? Empirical evidence from municipalities in China," Energy Policy, Elsevier, vol. 159(C).
    17. Li, Shanjun & Wang, Binglin & Zhou, Hui, 2024. "Decarbonizing passenger transportation in developing countries: Lessons and perspectives1," Regional Science and Urban Economics, Elsevier, vol. 107(C).
    18. Francisco Martin del Campo & Simron Jit Singh & Tomer Fishman & Adelle Thomas & Michael Drescher, 2023. "The Bahamas at risk: Material stocks, sea‐level rise, and the implications for development," Journal of Industrial Ecology, Yale University, vol. 27(4), pages 1165-1183, August.
    19. Liang Yuan & Weisheng Lu & Fan Xue & Maosu Li, 2023. "Building feature‐based machine learning regression to quantify urban material stocks: A Hong Kong study," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 336-349, February.
    20. Bu, Chujie & Cui, Xueqin & Li, Ruiyao & Li, Jin & Zhang, Yaxin & Wang, Can & Cai, Wenjia, 2021. "Achieving net-zero emissions in China’s passenger transport sector through regionally tailored mitigation strategies," Applied Energy, Elsevier, vol. 284(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:8:y:2021:i:1:d:10.1057_s41599-021-00757-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.