IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v11y2024i1d10.1057_s41599-024-03416-4.html
   My bibliography  Save this article

Identifying the underlying psychological constructs from self-expressed anti-vaccination argumentation

Author

Listed:
  • Dawn Holford

    (University of Bristol)

  • Ezequiel Lopez-Lopez

    (Max Planck Institute for Human Development)

  • Angelo Fasce

    (University of Coimbra)

  • Linda C. Karlsson

    (University of Turku)

  • Stephan Lewandowsky

    (University of Bristol
    University of Potsdam
    University of Western Australia)

Abstract

People’s negative attitudes to vaccines can be motivated by psychological factors—such as fears, ideological beliefs, and cognitive patterns—known as ‘attitude roots’. This study had two primary objectives: (1) to identify which of 11 known attitude roots are featured in individuals’ self-expressed reasons for negative vaccine attitudes (i.e., a linguistic analysis); (2) to explore how attitude roots present in self-expressed texts are linked to specific psychological measures. To achieve Objective 1, our study collected data from December 2022 to January 2023 from 556 participants from the US, who wrote texts to explain the reasons for their negative vaccine attitudes. The texts encompassed 2327 conceptually independent units of anti-vaccination argumentation, that were each coded for its attitude root(s) by at least two psychological experts. By allowing participants to spontaneously express their attitudes in their own words, we were able to observe how this differed from what participants reported to endorse when presented with a list of arguments. We found that there were four groups of attitude roots based on linguistic similarity in self-expression. In addition, latent class analysis of participants’ coded texts identified three distinct groups of participants that were characterised by their tendency to express combinations of arguments related to (1) fears, (2) anti-scientific conceptions, and (3) politicised perspectives. To achieve Objective 2, we collected participants’ responses to 11 validated measures of psychological constructs expected to underlie the respective 11 attitude roots, and used a correlational design to investigate how participants’ self-expressed attitude roots were linked to these measures. Logistic regressions showed that an expected psychological construct was the strongest, and significant, predictor for expression of three out of the four attitude root groups. We discuss the implications of these findings for health communicators and practitioners.

Suggested Citation

  • Dawn Holford & Ezequiel Lopez-Lopez & Angelo Fasce & Linda C. Karlsson & Stephan Lewandowsky, 2024. "Identifying the underlying psychological constructs from self-expressed anti-vaccination argumentation," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
  • Handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-03416-4
    DOI: 10.1057/s41599-024-03416-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-024-03416-4
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-024-03416-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jana Lasser & Segun T. Aroyehun & Fabio Carrella & Almog Simchon & David Garcia & Stephan Lewandowsky, 2023. "From alternative conceptions of honesty to alternative facts in communications by US politicians," Nature Human Behaviour, Nature, vol. 7(12), pages 2140-2151, December.
    2. Anna Soveri & Linda C Karlsson & Otto Mäki & Jan Antfolk & Otto Waris & Hasse Karlsson & Linnea Karlsson & Mikael Lindfelt & Stephan Lewandowsky, 2020. "Trait reactance and trust in doctors as predictors of vaccination behavior, vaccine attitudes, and use of complementary and alternative medicine in parents of young children," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-16, July.
    3. Linzer, Drew A. & Lewis, Jeffrey B., 2011. "poLCA: An R Package for Polytomous Variable Latent Class Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i10).
    4. Angelo Fasce & Philipp Schmid & Dawn L. Holford & Luke Bates & Iryna Gurevych & Stephan Lewandowsky, 2023. "A taxonomy of anti-vaccination arguments from a systematic literature review and text modelling," Nature Human Behaviour, Nature, vol. 7(9), pages 1462-1480, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adrian O’Hagan & Arthur White, 2019. "Improved model-based clustering performance using Bayesian initialization averaging," Computational Statistics, Springer, vol. 34(1), pages 201-231, March.
    2. Aline Riboli Marasca & Maurício Scopel Hoffmann & Anelise Reis Gaya & Denise Ruschel Bandeira, 2021. "Subjective Well-Being and Psychopathology Symptoms: Mental Health Profiles and their Relations with Academic Achievement in Brazilian Children," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 14(3), pages 1121-1137, June.
    3. Lisa Blaydes, 2023. "Assessing the Labor Conditions of Migrant Domestic Workers in the Arab Gulf States," ILR Review, Cornell University, ILR School, vol. 76(4), pages 724-747, August.
    4. Jindřich Špička & Zdeňka Náglová, 2022. "Consumer segmentation in the meat market - The case study of Czech Republic," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 68(2), pages 68-77.
    5. Nicholas T. Davis & Kirby Goidel & Yikai Zhao, 2021. "The Meanings of Democracy among Mass Publics," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 153(3), pages 849-921, February.
    6. Carter, Virginia & Derudder, Ben & Henríquez, Cristián, 2021. "Assessing local governments’ perception of the potential implementation of biophilic urbanism in Chile: A latent class approach," Land Use Policy, Elsevier, vol. 101(C).
    7. Arjan S. Gosal & Janine A. McMahon & Katharine M. Bowgen & Catherine H. Hoppe & Guy Ziv, 2021. "Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness," Land, MDPI, vol. 10(6), pages 1-14, May.
    8. Assem Abu Hatab & Padmaja Ravula & Swamikannu Nedumaran & Carl-Johan Lagerkvist, 2022. "Perceptions of the impacts of urban sprawl among urban and peri-urban dwellers of Hyderabad, India: a Latent class clustering analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 12787-12812, November.
    9. Martin Eling & David Pankoke, 2016. "Costs and Benefits of Financial Regulation: An Empirical Assessment for Insurance Companies," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 41(4), pages 529-554, October.
    10. Sunil Kumar & Zakir Husain & Diganta Mukherjee, 2015. "Assessing Consistency of Consumer Confidence Data using Dynamic Latent Class Analysis," Papers 1509.01215, arXiv.org.
    11. Lorena Charrier & Paola Berchialla & Paola Dalmasso & Alberto Borraccino & Patrizia Lemma & Franco Cavallo, 2019. "Cigarette Smoking and Multiple Health Risk Behaviors: A Latent Class Regression Model to Identify a Profile of Young Adolescents," Risk Analysis, John Wiley & Sons, vol. 39(8), pages 1771-1782, August.
    12. Raphaela Grafiadeli & Heide Glaesmer & Birgit Wagner, 2022. "Loss-Related Characteristics and Symptoms of Depression, Prolonged Grief, and Posttraumatic Stress Following Suicide Bereavement," IJERPH, MDPI, vol. 19(16), pages 1-10, August.
    13. Daniel L. Oberski, 2016. "A Review of Latent Variable Modeling With R," Journal of Educational and Behavioral Statistics, , vol. 41(2), pages 226-233, April.
    14. Guangchao Feng, 2014. "Estimating intercoder reliability: a structural equation modeling approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(4), pages 2355-2369, July.
    15. Giorgio Eduardo Montanari & Marco Doretti & Maria Francesca Marino, 2022. "Model-based two-way clustering of second-level units in ordinal multilevel latent Markov models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 457-485, June.
    16. Bradley D. Custer & Hope O. Akaeze, 2021. "A Typology of State Financial Aid Grant Programs Using Latent Class Analysis," Research in Higher Education, Springer;Association for Institutional Research, vol. 62(2), pages 175-205, March.
    17. Paolo Brunori & Alain Trannoy & Caterina Francesca Guidi, 2021. "Ranking populations in terms of inequality of health opportunity: A flexible latent type approach," Health Economics, John Wiley & Sons, Ltd., vol. 30(2), pages 358-383, February.
    18. Rezwana Rafiq & Michael G. McNally, 2023. "An exploratory analysis of alternative travel behaviors of ride-hailing users," Transportation, Springer, vol. 50(2), pages 571-605, April.
    19. Weissinger, Guy & Shelby Rivers, Alannah & Atte, Tita & Diamond, Guy, 2023. "Suicide risk screening in the school environment: Family factors and profiles," Children and Youth Services Review, Elsevier, vol. 145(C).
    20. Bart Neuts & João Romão & Peter Nijkamp & Asami Shikida, 2016. "Market segmentation and their potential economic impacts in an ecotourism destination," Tourism Economics, , vol. 22(4), pages 793-808, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-03416-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.