IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v10y2023i1d10.1057_s41599-023-02153-4.html
   My bibliography  Save this article

Construction of symmetric paired choice experiments: minimising runs and maximising efficiency

Author

Listed:
  • Abdulrahman S. Alamri

    (Royal Melbourne Institute of Technology
    University of Jeddah)

  • Stelios D. Georgiou

    (Royal Melbourne Institute of Technology)

  • Stella Stylianou

    (Royal Melbourne Institute of Technology)

Abstract

Discrete choice experiments (DCEs) are popular in various fields such as health resources, marketing, transport, economics, and many others for identifying the factors that influence an individual’s choice behaviour. Selecting the DCE design is crucial in determining the observable effects. In this paper, the optimal form of the information matrix is introduced for attributes at two levels, main effect models, and equal choice probabilities for paired choice experiments. Additionally, the construction of D-optimal designs is modified to obtain DCEs when the number of attributes equals the number of runs, including designs with choice sets of sizes that are not necessarily multiples of 4, i.e. N ≢ 0mod4. The designs suggested in this paper have the same or higher D-efficiencies than existing efficient designs for the same number of choice sets. Moreover, the proposed design techniques can be extended to be applied to situations where the attributes of DCEs have a higher number of levels (ℓ > 2), resulting in designs with the same improved D-efficiencies and sufficiently small sample sizes. The designs proposed in this paper offer a notable advantage by allowing a reduction of 33% in the number of choice pairs with only a marginal loss of 11% in D-efficiency when compared to an optimal design. In comparison, the design suggested by other researchers incurs a higher loss in D-efficiency.

Suggested Citation

  • Abdulrahman S. Alamri & Stelios D. Georgiou & Stella Stylianou, 2023. "Construction of symmetric paired choice experiments: minimising runs and maximising efficiency," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-12, December.
  • Handle: RePEc:pal:palcom:v:10:y:2023:i:1:d:10.1057_s41599-023-02153-4
    DOI: 10.1057/s41599-023-02153-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-023-02153-4
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-023-02153-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vikas Soekhai & Esther W. Bekker-Grob & Alan R. Ellis & Caroline M. Vass, 2019. "Discrete Choice Experiments in Health Economics: Past, Present and Future," PharmacoEconomics, Springer, vol. 37(2), pages 201-226, February.
    2. Rakhi Singh & Angela Dean & Ashish Das & Fangfang Sun, 2021. "A-optimal designs under a linearized model for discrete choice experiments," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(4), pages 445-465, May.
    3. Zsolt Sándor & Michel Wedel, 2002. "Profile Construction in Experimental Choice Designs for Mixed Logit Models," Marketing Science, INFORMS, vol. 21(4), pages 455-475, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. GOOS, Peter & VERMEULEN, Bart & VANDEBROEK, Martina, 2008. "D-optimal conjoint choice designs with no-choice options for a nested logit model," Working Papers 2008020, University of Antwerp, Faculty of Business and Economics.
    2. Nicolas Jacquemet & Stephane Luchini & Jason Shogren & Verity Watson, 2019. "Discrete Choice under Oaths," Post-Print halshs-02136103, HAL.
    3. Ricardo A. Daziano, 2022. "A choice experiment assessment of stated early response to COVID-19 vaccines in the USA," Health Economics Review, Springer, vol. 12(1), pages 1-16, December.
    4. Brouwers, Jonas & Cox, Bianca & Van Wilder, Astrid & Claessens, Fien & Bruyneel, Luk & De Ridder, Dirk & Eeckloo, Kristof & Vanhaecht, Kris, 2021. "The future of hospital quality of care policy: A multi-stakeholder discrete choice experiment in Flanders, Belgium," Health Policy, Elsevier, vol. 125(12), pages 1565-1573.
    5. Olivier Toubia & Duncan I. Simester & John R. Hauser & Ely Dahan, 2003. "Fast Polyhedral Adaptive Conjoint Estimation," Marketing Science, INFORMS, vol. 22(3), pages 273-303.
    6. Ozdemir, Semra & Gonzalez, Juan Marcos & Bansal, Prateek & Huynh, Vinh Anh & Sng, Ban Leong & Finkelstein, Eric, 2024. "Getting it right with discrete choice experiments: Are we hot or cold?," Social Science & Medicine, Elsevier, vol. 348(C).
    7. Kettlewell, Nathan & Walker, Matthew J. & Yoo, Hong Il, 2024. "Alternative Models of Preference Heterogeneity for Elicited Choice Probabilities," IZA Discussion Papers 16821, Institute of Labor Economics (IZA).
    8. Anders Dugstad & Kristine Grimsrud & Gorm Kipperberg & Henrik Lindhjem & Ståle Navrud, 2020. "Scope elasticity and economic significance in discrete choice experiments," Discussion Papers 942, Statistics Norway, Research Department.
    9. Rose, John M. & Bliemer, Michiel C.J. & Hensher, David A. & Collins, Andrew T., 2008. "Designing efficient stated choice experiments in the presence of reference alternatives," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 395-406, May.
    10. Shimelis Araya Geda & Rainer Kühl, 2021. "Exploring Smallholder Farmers’ Preferences for Climate-Smart Seed Innovations: Empirical Evidence from Southern Ethiopia," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
    11. Pestana, Joana & Frutuoso, João & Costa, Eduardo & Fonseca, Filipa, 2024. "Heterogeneity in physician's job preferences in a dual practice context – Evidence from a DCE," Social Science & Medicine, Elsevier, vol. 343(C).
    12. Andreas Falke & Harald Hruschka, 2017. "Setting prices in mixed logit model designs," Marketing Letters, Springer, vol. 28(1), pages 139-154, March.
    13. Sydenham, Rikke Vognbjerg & Jarbøl, Dorte Ejg & Hansen, Malene Plejdrup & Justesen, Ulrik Stenz & Watson, Verity & Pedersen, Line Bjørnskov, 2022. "Prescribing antibiotics: Factors driving decision-making in general practice. A discrete choice experiment," Social Science & Medicine, Elsevier, vol. 305(C).
    14. Bliemer, Michiel C.J. & Rose, John M. & Hensher, David A., 2009. "Efficient stated choice experiments for estimating nested logit models," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 19-35, January.
    15. Raphael Thomadsen & Robert P. Rooderkerk & On Amir & Neeraj Arora & Bryan Bollinger & Karsten Hansen & Leslie John & Wendy Liu & Aner Sela & Vishal Singh & K. Sudhir & Wendy Wood, 2018. "How Context Affects Choice," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(1), pages 3-14, March.
    16. Swait, J. & de Bekker-Grob, E.W., 2022. "A discrete choice model implementing gist-based categorization of alternatives, with applications to patient preferences for cancer screening and treatment," Journal of Health Economics, Elsevier, vol. 85(C).
    17. Elizabeth Kinter & Thomas Prior & Christopher Carswell & John Bridges, 2012. "A Comparison of Two Experimental Design Approaches in Applying Conjoint Analysis in Patient-Centered Outcomes Research," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 5(4), pages 279-294, December.
    18. González, Rosa Marina & Román, Concepción & Ortúzar, Juan de Dios, 2019. "Preferences for sustainable mobility in natural areas: The case of Teide National Park," Journal of Transport Geography, Elsevier, vol. 76(C), pages 42-51.
    19. David Hensher & William Greene, 2010. "Non-attendance and dual processing of common-metric attributes in choice analysis: a latent class specification," Empirical Economics, Springer, vol. 39(2), pages 413-426, October.
    20. Viberg Johansson, Jennifer & Shah, Nisha & Haraldsdóttir, Eik & Bentzen, Heidi Beate & Coy, Sarah & Kaye, Jane & Mascalzoni, Deborah & Veldwijk, Jorien, 2021. "Governance mechanisms for sharing of health data: An approach towards selecting attributes for complex discrete choice experiment studies," Technology in Society, Elsevier, vol. 66(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:10:y:2023:i:1:d:10.1057_s41599-023-02153-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.