IDEAS home Printed from https://ideas.repec.org/p/ant/wpaper/2008020.html
   My bibliography  Save this paper

D-optimal conjoint choice designs with no-choice options for a nested logit model

Author

Listed:
  • GOOS, Peter
  • VERMEULEN, Bart
  • VANDEBROEK, Martina

Abstract

Despite the fact that many conjoint choice experiments offer respondents a no-choice option in every choice set, the optimal design of conjoint choice experiments involving no-choice options has received only a limited amount of attention in the literature. In this article, we present an approach to construct D-optimal designs for this type of experiment. For that purpose, we derive the information matrix of a nested multinomial logit model that is appropriate for analyzing data from choice experiments with no-choice options. The newly derived information matrix is compared to the information matrix for the multinomial logit model that is used in the literature to construct designs for choice experiments. It is also used to quantify the loss of information in a choice experiment due to the presence of a no-choice option.

Suggested Citation

  • GOOS, Peter & VERMEULEN, Bart & VANDEBROEK, Martina, 2008. "D-optimal conjoint choice designs with no-choice options for a nested logit model," Working Papers 2008020, University of Antwerp, Faculty of Business and Economics.
  • Handle: RePEc:ant:wpaper:2008020
    as

    Download full text from publisher

    File URL: https://repository.uantwerpen.be/docman/irua/328e23/82c173c4.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zsolt Sándor & Michel Wedel, 2002. "Profile Construction in Experimental Choice Designs for Mixed Logit Models," Marketing Science, INFORMS, vol. 21(4), pages 455-475, February.
    2. Kessels, Roselinde & Jones, Bradley & Goos, Peter & Vandebroek, Martina, 2009. "An Efficient Algorithm for Constructing Bayesian Optimal Choice Designs," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 279-291.
    3. Dhar, Ravi, 1997. "Consumer Preference for a No-Choice Option," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 24(2), pages 215-231, September.
    4. Kessels, Roselinde & Goos, Peter & Vandebroek, Martina, 2008. "Optimal designs for conjoint experiments," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2369-2387, January.
    5. Heiko Großmann & Heinz Holling & Ulrike Graßhoff & Rainer Schwabe, 2006. "Optimal Designs for Asymmetric Linear Paired Comparisons with a Profile Strength Constraint," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 64(1), pages 109-119, August.
    6. Goos, Peter & Vandebroek, Martina, 2001. "-optimal response surface designs in the presence of random block effects," Computational Statistics & Data Analysis, Elsevier, vol. 37(4), pages 433-453, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vermeulen, Bart & Goos, Peter & Vandebroek, Martina, 2008. "Models and optimal designs for conjoint choice experiments including a no-choice option," International Journal of Research in Marketing, Elsevier, vol. 25(2), pages 94-103.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Palhazi Cuervo, Daniel & Kessels, Roselinde & Goos, Peter & Sörensen, Kenneth, 2016. "An integrated algorithm for the optimal design of stated choice experiments with partial profiles," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 648-669.
    2. Yu, Jie & Goos, Peter & Vandebroek, Martina, 2010. "Comparing different sampling schemes for approximating the integrals involved in the efficient design of stated choice experiments," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1268-1289, December.
    3. John M. Rose & Michiel C.J. Bliemer, 2014. "Stated choice experimental design theory: the who, the what and the why," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 7, pages 152-177, Edward Elgar Publishing.
    4. KESSELS, Roselinde & BRADLEY, Jones & GOOS, Peter, 2012. "A comparison of partial profile designs for discrete choice experiments with an application in software development," Working Papers 2012004, University of Antwerp, Faculty of Business and Economics.
    5. Richard G. Newell & Juha Siikamäki, 2014. "Nudging Energy Efficiency Behavior: The Role of Information Labels," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(4), pages 555-598.
    6. Yu, Jie & Goos, Peter & Vandebroek, Martina, 2011. "Individually adapted sequential Bayesian conjoint-choice designs in the presence of consumer heterogeneity," International Journal of Research in Marketing, Elsevier, vol. 28(4), pages 378-388.
    7. Qing Liu & Yihui (Elina) Tang, 2015. "Construction of Heterogeneous Conjoint Choice Designs: A New Approach," Marketing Science, INFORMS, vol. 34(3), pages 346-366, May.
    8. Arnouts, Heidi & Goos, Peter, 2010. "Update formulas for split-plot and block designs," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3381-3391, December.
    9. Balaine, Lorraine & Gallai, Nicola & Del Corso, Jean-Pierre & Kephaliacos, Charilaos, 2020. "Trading off environmental goods for compensations: Insights from traditional and deliberative valuation methods in the Ecuadorian Amazon," Ecosystem Services, Elsevier, vol. 43(C).
    10. Andreas Falke & Harald Hruschka, 2017. "Setting prices in mixed logit model designs," Marketing Letters, Springer, vol. 28(1), pages 139-154, March.
    11. Jie Yu & Peter Goos & Martina Vandebroek, 2009. "Efficient Conjoint Choice Designs in the Presence of Respondent Heterogeneity," Marketing Science, INFORMS, vol. 28(1), pages 122-135, 01-02.
    12. Crabbe, M. & Vandebroek, M., 2012. "Improving the efficiency of individualized designs for the mixed logit choice model by including covariates," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2059-2072.
    13. J. DeShazo & Trudy Cameron & Manrique Saenz, 2009. "The Effect of Consumers’ Real-World Choice Sets on Inferences from Stated Preference Surveys," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 42(3), pages 319-343, March.
    14. Rossella Berni & Nedka Dechkova Nikiforova & Patrizia Pinelli, 2024. "An Optimal Design through a Compound Criterion for Integrating Extra Preference Information in a Choice Experiment: A Case Study on Moka Ground Coffee," Stats, MDPI, vol. 7(2), pages 1-16, June.
    15. Le Coent, Philippe & Préget, Raphaële & Thoyer, Sophie, 2017. "Compensating Environmental Losses Versus Creating Environmental Gains: Implications for Biodiversity Offsets," Ecological Economics, Elsevier, vol. 142(C), pages 120-129.
    16. Andreas Falke & Harald Hruschka, 2017. "A Monte Carlo study of design-generating algorithms for the latent class mixed logit model," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1035-1053, October.
    17. Bliemer, Michiel C.J. & Rose, John M., 2010. "Construction of experimental designs for mixed logit models allowing for correlation across choice observations," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 720-734, July.
    18. John Rose & Michiel Bliemer, 2013. "Sample size requirements for stated choice experiments," Transportation, Springer, vol. 40(5), pages 1021-1041, September.
    19. Qing Liu & Neeraj Arora, 2011. "Efficient Choice Designs for a Consider-Then-Choose Model," Marketing Science, INFORMS, vol. 30(2), pages 321-338, 03-04.
    20. Ailawadi, Kusum L. & Gedenk, Karen & Langer, Tobias & Ma, Yu & Neslin, Scott A., 2014. "Consumer response to uncertain promotions: An empirical analysis of conditional rebates," International Journal of Research in Marketing, Elsevier, vol. 31(1), pages 94-106.

    More about this item

    Keywords

    Choice-based conjoint; Information loss; Multinomial logit model; Nested logit model; No-choice option;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ant:wpaper:2008020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joeri Nys (email available below). General contact details of provider: https://edirc.repec.org/data/ftufsbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.