IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v10y2023i1d10.1057_s41599-023-02126-7.html
   My bibliography  Save this article

Breaking through ingrained beliefs: revisiting the impact of the digital economy on carbon emissions

Author

Listed:
  • Haisen Wang

    (Wuhan University
    Wuhan University)

  • Gangqiang Yang

    (Wuhan University
    Wuhan University)

  • Ziyang Yue

    (Wuhan University)

Abstract

The impact of the digital economy on carbon emissions has become a topic of contention due to the paucity of guiding theoretical and empirical research. This study presents a comprehensive causal mediation model based on an expanded structural equation model. Leveraging extensive big data analysis and data sourced from developing nations, this research aims to elucidate the precise impact of the digital economy on carbon emissions and unravel the underlying mechanism. The findings unequivocally demonstrate the pivotal role played by the digital economy in mitigating carbon emissions. Even after subjecting the conclusions to a battery of robustness and endogeneity tests, their validity remains intact. The mechanism analysis reveals that the digital economy effectively curbs carbon emissions through low-carbon technological innovation and industrial diversification. The disproportionate dominance of digital industrialization is a significant factor contributing to the emergence of the “Digital Economy Paradox”. Consequently, this paper not only introduces a novel analytical perspective that systematically comprehends the carbon impact of the digital economy but also presents fresh empirical evidence that advocates for the transformation and development of a low-carbon economy.

Suggested Citation

  • Haisen Wang & Gangqiang Yang & Ziyang Yue, 2023. "Breaking through ingrained beliefs: revisiting the impact of the digital economy on carbon emissions," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-13, December.
  • Handle: RePEc:pal:palcom:v:10:y:2023:i:1:d:10.1057_s41599-023-02126-7
    DOI: 10.1057/s41599-023-02126-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-023-02126-7
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-023-02126-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fabio Grazi & Jeroen C.J.M. van den Bergh & Jos N. van Ommeren, 2008. "An Empirical Analysis of Urban Form, Transport, and Global Warming," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 97-122.
    2. Aminou Arouna & Jeffrey D. Michler & Wilfried G. Yergo & Kazuki Saito, 2021. "One Size Fits All? Experimental Evidence on the Digital Delivery of Personalized Extension Advice in Nigeria," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(2), pages 596-619, March.
    3. Jonathan Haidt & Nick Allen, 2020. "Scrutinizing the effects of digital technology on mental health," Nature, Nature, vol. 578(7794), pages 226-227, February.
    4. Yanchun Yi & Yajun Wang & Yaqin Li & Ji Qi, 2021. "Impact of urban density on carbon emissions in China," Applied Economics, Taylor & Francis Journals, vol. 53(53), pages 6153-6165, November.
    5. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
    6. Peter Howson, 2019. "Tackling climate change with blockchain," Nature Climate Change, Nature, vol. 9(9), pages 644-645, September.
    7. Cheng, Lu & Mi, Zhifu & Sudmant, Andrew & Coffman, D'Maris, 2022. "Bigger cities better climate? Results from an analysis of urban areas in China," Energy Economics, Elsevier, vol. 107(C).
    8. Zhao, Jiaxin & Mattauch, Linus, 2022. "When standards have better distributional consequences than carbon taxes," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    9. Hanewald, Katja & Jia, Ruo & Liu, Zining, 2021. "Why is inequality higher among the old? Evidence from China," China Economic Review, Elsevier, vol. 66(C).
    10. Ren, Siyu & Hao, Yu & Xu, Lu & Wu, Haitao & Ba, Ning, 2021. "Digitalization and energy: How does internet development affect China's energy consumption?," Energy Economics, Elsevier, vol. 98(C).
    11. Ning, Lutao & Wang, Fan & Li, Jian, 2016. "Urban innovation, regional externalities of foreign direct investment and industrial agglomeration: Evidence from Chinese cities," Research Policy, Elsevier, vol. 45(4), pages 830-843.
    12. Tu, Zhengge & Hu, Tianyang & Shen, Renjun, 2019. "Evaluating public participation impact on environmental protection and ecological efficiency in China: Evidence from PITI disclosure," China Economic Review, Elsevier, vol. 55(C), pages 111-123.
    13. Kevin J. Stiroh & Dale W. Jorgenson, 1999. "Information Technology and Growth," American Economic Review, American Economic Association, vol. 89(2), pages 109-115, May.
    14. Sule Alan & Seda Ertac & Ipek Mumcu, 2018. "Gender Stereotypes in the Classroom and Effects on Achievement," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 876-890, December.
    15. Li Cui & Ying Hou & Yang Liu & Lu Zhang, 2021. "Text mining to explore the influencing factors of sharing economy driven digital platforms to promote social and economic development," Information Technology for Development, Taylor & Francis Journals, vol. 27(4), pages 779-801, October.
    16. Ghisetti, Claudia & Quatraro, Francesco, 2017. "Green Technologies and Environmental Productivity: A Cross-sectoral Analysis of Direct and Indirect Effects in Italian Regions," Ecological Economics, Elsevier, vol. 132(C), pages 1-13.
    17. Fremstad, Anders & Underwood, Anthony & Zahran, Sammy, 2018. "The Environmental Impact of Sharing: Household and Urban Economies in CO2 Emissions," Ecological Economics, Elsevier, vol. 145(C), pages 137-147.
    18. Aichele, Rahel & Felbermayr, Gabriel, 2012. "Kyoto and the carbon footprint of nations," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 336-354.
    19. Pitchapa Smutradontri & Savitri Gadavanij, 2020. "Fandom and identity construction: an analysis of Thai fans’ engagement with Twitter," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-13, December.
    20. Chang, Chun-Ping & Dong, Minyi & Sui, Bo & Chu, Yin, 2019. "Driving forces of global carbon emissions: From time- and spatial-dynamic perspectives," Economic Modelling, Elsevier, vol. 77(C), pages 70-80.
    21. Boqiang Lin & Zhijie Jia, 2020. "Supply control vs. demand control: why is resource tax more effective than carbon tax in reducing emissions?," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-13, December.
    22. Wang, Jianda & Dong, Kangyin & Dong, Xiucheng & Taghizadeh-Hesary, Farhad, 2022. "Assessing the digital economy and its carbon-mitigation effects: The case of China," Energy Economics, Elsevier, vol. 113(C).
    23. Maryam Farboodi & Roxana Mihet & Thomas Philippon & Laura Veldkamp, 2019. "Big Data and Firm Dynamics," AEA Papers and Proceedings, American Economic Association, vol. 109, pages 38-42, May.
    24. Shangrong Jiang & Yuze Li & Quanying Lu & Yongmiao Hong & Dabo Guan & Yu Xiong & Shouyang Wang, 2021. "Policy assessments for the carbon emission flows and sustainability of Bitcoin blockchain operation in China," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    25. Prajogo, Daniel & Olhager, Jan, 2012. "Supply chain integration and performance: The effects of long-term relationships, information technology and sharing, and logistics integration," International Journal of Production Economics, Elsevier, vol. 135(1), pages 514-522.
    26. World Bank, "undated". "State and Trends of Carbon Pricing 2020 [Situación y tendencias de la fijación del precio al carbono 2020]," World Bank Publications - Reports 33809, The World Bank Group.
    27. Dehghan Shabani, Zahra & Shahnazi, Rouhollah, 2019. "Energy consumption, carbon dioxide emissions, information and communications technology, and gross domestic product in Iranian economic sectors: A panel causality analysis," Energy, Elsevier, vol. 169(C), pages 1064-1078.
    28. Eric Williams, 2011. "Environmental effects of information and communications technologies," Nature, Nature, vol. 479(7373), pages 354-358, November.
    29. Li, Jinkai & Gao, Ming & Luo, Erga & Wang, Jingyi & Zhang, Xuebiao, 2023. "Does rural energy poverty alleviation really reduce agricultural carbon emissions? The case of China," Energy Economics, Elsevier, vol. 119(C).
    30. Rohan Best & Paul J. Burke & Frank Jotzo, 2020. "Carbon Pricing Efficacy: Cross-Country Evidence," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 77(1), pages 69-94, September.
    31. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2019. "How information and communication technology drives carbon emissions: A sector-level analysis for China," Energy Economics, Elsevier, vol. 81(C), pages 380-392.
    32. Xinshu Zhao & John G. Lynch & Qimei Chen, 2010. "Reconsidering Baron and Kenny: Myths and Truths about Mediation Analysis," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 37(2), pages 197-206, August.
    33. Jiandong Chen & Ming Gao & Shulei Cheng & Yiyin Xu & Malin Song & Yu Liu & Wenxuan Hou & Shuhong Wang, 2022. "Evaluation and drivers of global low-carbon economies based on satellite data," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-12, December.
    34. Alacevich, Caterina & Zejcirovic, Dijana, 2020. "Does violence against civilians depress voter turnout? Evidence from Bosnia and Herzegovina," Journal of Comparative Economics, Elsevier, vol. 48(4), pages 841-865.
    35. Emmanouil Tranos & Tasos Kitsos & Raquel Ortega-Argilés, 2021. "Digital economy in the UK: regional productivity effects of early adoption," Regional Studies, Taylor & Francis Journals, vol. 55(12), pages 1924-1938, December.
    36. Viviana Celli, 2022. "Causal mediation analysis in economics: Objectives, assumptions, models," Journal of Economic Surveys, Wiley Blackwell, vol. 36(1), pages 214-234, February.
    37. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anhang Chen & Huiqin Zhang & Yuxiang Zhang & Junwei Zhao, 2024. "Manufacturers’ digital transformation under carbon cap-and-trade policy: investment strategy and environmental impact," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Lei & Chen, Yangyang & Ramsey, Thomas Stephen & Hewings, Geoffrey J.D., 2021. "Will researching digital technology really empower green development?," Technology in Society, Elsevier, vol. 66(C).
    2. Lin, Boqiang & Huang, Chenchen, 2023. "How will promoting the digital economy affect electricity intensity?," Energy Policy, Elsevier, vol. 173(C).
    3. Tang, Chang & Xue, Yan & Wu, Haitao & Irfan, Muhammad & Hao, Yu, 2022. "How does telecommunications infrastructure affect eco-efficiency? Evidence from a quasi-natural experiment in China," Technology in Society, Elsevier, vol. 69(C).
    4. Bai, Ling & Guo, Tianran & Xu, Wei & Liu, Yaobin & Kuang, Ming & Jiang, Lei, 2023. "Effects of digital economy on carbon emission intensity in Chinese cities: A life-cycle theory and the application of non-linear spatial panel smooth transition threshold model," Energy Policy, Elsevier, vol. 183(C).
    5. Zhang, Bing-bing & Wang, Yuan & Chen, Yue & Zhou, Junting, 2024. "Digital transformation by firms and the cleanliness of China's export products," Energy Economics, Elsevier, vol. 134(C).
    6. Ma, Jinjin & Yang, Lin & Wang, Donghan & Li, Yiming & Xie, Zuomiao & Lv, Haodong & Woo, Donghyup, 2024. "Digitalization in response to carbon neutrality: Mechanisms, effects and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    7. Tianchu Feng & Andrea Appolloni & Jiayu Chen, 2024. "How does corporate digital transformation affect carbon productivity? Evidence from Chinese listed companies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(12), pages 31425-31445, December.
    8. Hong, Junjie & Shi, Fangyuan & Zheng, Yuhan, 2023. "Does network infrastructure construction reduce energy intensity? Based on the “Broadband China” strategy," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    9. Rongwu Zhang & Wenqiang Fu & Yingxu Kuang, 2022. "Can Digital Economy Promote Energy Conservation and Emission Reduction in Heavily Polluting Enterprises? Empirical Evidence from China," IJERPH, MDPI, vol. 19(16), pages 1-21, August.
    10. Ge, Yihan & Yuan, Rong, 2024. "Exploring decoupling relationship between ICT investments and energy consumption in China's provinces: Factors and policy implications," Energy, Elsevier, vol. 286(C).
    11. Kun Liu & Xuemin Liu & Zihao Wu, 2024. "Nexus between Corporate Digital Transformation and Green Technological Innovation Performance: The Mediating Role of Optimizing Resource Allocation," Sustainability, MDPI, vol. 16(3), pages 1-21, February.
    12. Yu, Hongyang & Wang, Jinchao & Xu, Jiajun, 2023. "Assessing the role of digital economy agglomeration in energy conservation and emission reduction: Evidence from China," Energy, Elsevier, vol. 284(C).
    13. Axenbeck, Janna & Berner, Anne & Kneib, Thomas, 2022. "What drives the relationship between digitalization and industrial energy demand? Exploring firm-level heterogeneity," ZEW Discussion Papers 22-059, ZEW - Leibniz Centre for European Economic Research.
    14. Yi, Jiahui & Dai, Sheng & Li, Lin & Cheng, Jinhua, 2024. "How does digital economy development affect renewable energy innovation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    15. Li, Yaya & Zhang, Yuru & Pan, An & Han, Minchun & Veglianti, Eleonora, 2022. "Carbon emission reduction effects of industrial robot applications: Heterogeneity characteristics and influencing mechanisms," Technology in Society, Elsevier, vol. 70(C).
    16. Siliang Guo & Yanhua Diao & Junliang Du, 2022. "Coupling Coordination Measurement and Evaluation of Urban Digitalization and Green Development in China," IJERPH, MDPI, vol. 19(22), pages 1-32, November.
    17. Shuming Ren & Lianqing Li & Yueqi Han & Yu Hao & Haitao Wu, 2022. "The emerging driving force of inclusive green growth: Does digital economy agglomeration work?," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1656-1678, May.
    18. Hongye Sun & Gongjing Gao, 2024. "How does digital transformation affect the emissions of environmental pollutants? From the perspective of nonlinear nexuses," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 73(2), pages 599-637, August.
    19. Shunbin Zhong & Huafu Shen & Ziheng Niu & Yang Yu & Lin Pan & Yaojun Fan & Atif Jahanger, 2022. "Moving towards Environmental Sustainability: Can Digital Economy Reduce Environmental Degradation in China?," IJERPH, MDPI, vol. 19(23), pages 1-23, November.
    20. Yuqi Zhang & Haisen Wang & Zhigang Chen & Xuechao Wang, 2025. "Digital finance and carbon emissions: empirical evidence from China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(1), pages 1-23, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:10:y:2023:i:1:d:10.1057_s41599-023-02126-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.