IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v62y2011i8d10.1057_jors.2010.91.html
   My bibliography  Save this article

A multiple objective goal programming approach to the truckload routing problem

Author

Listed:
  • V M Miori

    (St. Joseph's University)

Abstract

Truckload (TL) routing has always been a challenge. The TL routing problem (TRP) itself is hard, but the complexity of solving the problem increases due to the stochastic nature of TL demand. It is traditionally approached using single objective solution methodologies that range from linear programming to dynamic programming techniques. This paper presents a deterministic multiple objective formulation of the TRP. A ‘route algebra’ is developed to facilitate the solution procedure, paving the way for the use of goal programming and tabu search techniques.

Suggested Citation

  • V M Miori, 2011. "A multiple objective goal programming approach to the truckload routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(8), pages 1524-1532, August.
  • Handle: RePEc:pal:jorsoc:v:62:y:2011:i:8:d:10.1057_jors.2010.91
    DOI: 10.1057/jors.2010.91
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2010.91
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2010.91?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sharma, Dinesh K. & Jana, R.K., 2009. "A hybrid genetic algorithm model for transshipment management decisions," International Journal of Production Economics, Elsevier, vol. 122(2), pages 703-713, December.
    2. A Baykasoglu & S Owen & N Gindy, 1999. "Solution of goal programming models using a basic taboo search algorithm," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(9), pages 960-973, September.
    3. Chu, Ching-Wu, 2005. "A heuristic algorithm for the truckload and less-than-truckload problem," European Journal of Operational Research, Elsevier, vol. 165(3), pages 657-667, September.
    4. Sundararajan Arunapuram & Kamlesh Mathur & Daniel Solow, 2003. "Vehicle Routing and Scheduling with Full Truckloads," Transportation Science, INFORMS, vol. 37(2), pages 170-182, May.
    5. James S. Dyer, 1972. "Interactive Goal Programming," Management Science, INFORMS, vol. 19(1), pages 62-70, September.
    6. Park, Yang Byung & Koelling, C. Patrick, 1986. "A solution of vehicle routing problems in a multiple objective environment," Engineering Costs and Production Economics, Elsevier, vol. 10(2), pages 121-132, June.
    7. A. Charnes & W. W. Cooper & D. Klingman & R. J. Niehaus, 1975. "Explicit Solutions in Convex Goal Programming," Management Science, INFORMS, vol. 22(4), pages 438-448, December.
    8. Gronalt, Manfred & Hartl, Richard F. & Reimann, Marc, 2003. "New savings based algorithms for time constrained pickup and delivery of full truckloads," European Journal of Operational Research, Elsevier, vol. 151(3), pages 520-535, December.
    9. Emilio Carrizosa & Dolores Romero-Morales, 2001. "Combining Minsum And Minmax: A Goal Programming Approach," Operations Research, INFORMS, vol. 49(1), pages 169-174, February.
    10. Calvete, Herminia I. & Gale, Carmen & Oliveros, Maria-Jose & Sanchez-Valverde, Belen, 2007. "A goal programming approach to vehicle routing problems with soft time windows," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1720-1733, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zolfagharinia, Hossein & Haughton, Michael, 2018. "The importance of considering non-linear layover and delay costs for local truckers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 331-355.
    2. S Dhouib & A Kharrat & H Chabchoub, 2011. "Goal programming using multiple objective hybrid metaheuristic algorithm," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(4), pages 677-689, April.
    3. Mohammad M. Fazel-Zarandi & J. Christopher Beck, 2012. "Using Logic-Based Benders Decomposition to Solve the Capacity- and Distance-Constrained Plant Location Problem," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 387-398, August.
    4. Escudero-Santana, Alejandro & Muñuzuri, Jesús & Cortés, Pablo & Onieva, Luis, 2021. "The one container drayage problem with soft time windows," Research in Transportation Economics, Elsevier, vol. 90(C).
    5. Jennifer A. Pazour & Lucas C. Neubert, 2013. "Routing and Scheduling of Cross-Town Drayage Operations at J.B. Hunt Transport," Interfaces, INFORMS, vol. 43(2), pages 117-129, April.
    6. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2016. "Thirty years of heterogeneous vehicle routing," European Journal of Operational Research, Elsevier, vol. 249(1), pages 1-21.
    7. Sébastien Mouthuy & Florence Massen & Yves Deville & Pascal Van Hentenryck, 2015. "A Multistage Very Large-Scale Neighborhood Search for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 49(2), pages 223-238, May.
    8. Li, Zhaojin & Liu, Ya & Yang, Zhen, 2021. "An effective kernel search and dynamic programming hybrid heuristic for a multimodal transportation planning problem with order consolidation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    9. Andreas Stenger & Daniele Vigo & Steffen Enz & Michael Schwind, 2013. "An Adaptive Variable Neighborhood Search Algorithm for a Vehicle Routing Problem Arising in Small Package Shipping," Transportation Science, INFORMS, vol. 47(1), pages 64-80, February.
    10. Sara Martins & Pedro Amorim & Bernardo Almada-Lobo, 2018. "Delivery mode planning for distribution to brick-and-mortar retail stores: discussion and literature review," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 785-812, December.
    11. Bertazzi, Luca & Bosco, Adamo & Laganà, Demetrio, 2015. "Managing stochastic demand in an Inventory Routing Problem with transportation procurement," Omega, Elsevier, vol. 56(C), pages 112-121.
    12. Nijkamp, P. & Spronk, J., 1978. "Interactive multiple goal programming," Serie Research Memoranda 0003, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    13. Mariano Luque & Rafael Caballero & Julian Molina & Francisco Ruiz, 2007. "Equivalent Information for Multiobjective Interactive Procedures," Management Science, INFORMS, vol. 53(1), pages 125-134, January.
    14. Lai, Minghui & Cai, Xiaoqiang & Hu, Qian, 2017. "An iterative auction for carrier collaboration in truckload pickup and delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 60-80.
    15. Liu, Weihua & Wang, Qian & Mao, Qiaomei & Wang, Shuqing & Zhu, Donglei, 2015. "A scheduling model of logistics service supply chain based on the mass customization service and uncertainty of FLSP’s operation time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 189-215.
    16. Stelios Rozakis & Alexandra Sintori & Konstantinos Tsiboukas, 2009. "Utility-derived Supply Function of Sheep Milk: The Case of Etoloakarnania, Greece," Working Papers 2009-11, Agricultural University of Athens, Department Of Agricultural Economics.
    17. Neves-Moreira, F. & Amorim, P. & Guimarães, L. & Almada-Lobo, B., 2016. "A long-haul freight transportation problem: Synchronizing resources to deliver requests passing through multiple transshipment locations," European Journal of Operational Research, Elsevier, vol. 248(2), pages 487-506.
    18. Zajac, Sandra & Huber, Sandra, 2021. "Objectives and methods in multi-objective routing problems: a survey and classification scheme," European Journal of Operational Research, Elsevier, vol. 290(1), pages 1-25.
    19. Weihua Liu & Yi Yang & Shuqing Wang & Enze Bai, 2017. "A scheduling model of logistics service supply chain based on the time windows of the FLSP’s operation and customer requirement," Annals of Operations Research, Springer, vol. 257(1), pages 183-206, October.
    20. Kalu, Timothy Ch. U., 1999. "An algorithm for systems welfare interactive goal programming modelling," European Journal of Operational Research, Elsevier, vol. 116(3), pages 508-529, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:62:y:2011:i:8:d:10.1057_jors.2010.91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.