IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v248y2016i2p487-506.html
   My bibliography  Save this article

A long-haul freight transportation problem: Synchronizing resources to deliver requests passing through multiple transshipment locations

Author

Listed:
  • Neves-Moreira, F.
  • Amorim, P.
  • Guimarães, L.
  • Almada-Lobo, B.

Abstract

This research aims at tackling a real-world long-haul freight transportation problem where tractors are allowed to exchange semi-trailers through several transshipment points until a request reaches its destiny. The unique characteristics of the considered logistics network allow for providing long-haul services by means of short-haul jobs, drastically reducing empty truck journeys. A greater flexibility is achieved with faster responses. Furthermore, the planning goals as well as the nature of the considered trips led to the definition of a new problem, the long-haul freight transportation problem with multiple transshipment locations. A novel mathematical formulation is developed to ensure resource synchronization while including realistic features, which are commonly found separately in the literature. Considering the complexity and dimension of this routing and scheduling problem, a mathematical programming heuristic (matheuristic) is developed with the objective of obtaining good quality solutions in a reasonable amount of time, considering the logistics business context. We provide a comparison between the results obtained for 79 real-world instances. The developed solution method is now the basis of a decision support system of a Portuguese logistics operator (LO).

Suggested Citation

  • Neves-Moreira, F. & Amorim, P. & Guimarães, L. & Almada-Lobo, B., 2016. "A long-haul freight transportation problem: Synchronizing resources to deliver requests passing through multiple transshipment locations," European Journal of Operational Research, Elsevier, vol. 248(2), pages 487-506.
  • Handle: RePEc:eee:ejores:v:248:y:2016:i:2:p:487-506
    DOI: 10.1016/j.ejor.2015.07.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715006803
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.07.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dumas, Yvan & Desrosiers, Jacques & Soumis, Francois, 1991. "The pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 54(1), pages 7-22, September.
    2. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    3. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    4. Imai, Akio & Nishimura, Etsuko & Current, John, 2007. "A Lagrangian relaxation-based heuristic for the vehicle routing with full container load," European Journal of Operational Research, Elsevier, vol. 176(1), pages 87-105, January.
    5. Gerardo Berbeglia & Jean-François Cordeau & Irina Gribkovskaia & Gilbert Laporte, 2007. "Rejoinder on: Static pickup and delivery problems: a classification scheme and survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 45-47, July.
    6. Ropke, Stefan & Pisinger, David, 2006. "A unified heuristic for a large class of Vehicle Routing Problems with Backhauls," European Journal of Operational Research, Elsevier, vol. 171(3), pages 750-775, June.
    7. Gerardo Berbeglia & Jean-François Cordeau & Irina Gribkovskaia & Gilbert Laporte, 2007. "Static pickup and delivery problems: a classification scheme and survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-31, July.
    8. Helber, Stefan & Sahling, Florian, 2010. "A fix-and-optimize approach for the multi-level capacitated lot sizing problem," International Journal of Production Economics, Elsevier, vol. 123(2), pages 247-256, February.
    9. Liu, Ran & Xie, Xiaolan & Augusto, Vincent & Rodriguez, Carlos, 2013. "Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care," European Journal of Operational Research, Elsevier, vol. 230(3), pages 475-486.
    10. Derigs, Ulrich & Kurowsky, René & Vogel, Ulrich, 2011. "Solving a real-world vehicle routing problem with multiple use of tractors and trailers and EU-regulations for drivers arising in air cargo road feeder services," European Journal of Operational Research, Elsevier, vol. 213(1), pages 309-319, August.
    11. Drexl, Michael, 2013. "Applications of the vehicle routing problem with trailers and transshipments," European Journal of Operational Research, Elsevier, vol. 227(2), pages 275-283.
    12. Paolo Toth & Daniele Vigo, 1997. "An Exact Algorithm for the Vehicle Routing Problem with Backhauls," Transportation Science, INFORMS, vol. 31(4), pages 372-385, November.
    13. Zhong, Yingjie & Cole, Michael H., 2005. "A vehicle routing problem with backhauls and time windows: a guided local search solution," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 41(2), pages 131-144, March.
    14. Villegas, Juan G. & Prins, Christian & Prodhon, Caroline & Medaglia, Andrés L. & Velasco, Nubia, 2013. "A matheuristic for the truck and trailer routing problem," European Journal of Operational Research, Elsevier, vol. 230(2), pages 231-244.
    15. Sundararajan Arunapuram & Kamlesh Mathur & Daniel Solow, 2003. "Vehicle Routing and Scheduling with Full Truckloads," Transportation Science, INFORMS, vol. 37(2), pages 170-182, May.
    16. Verena Schmid & Karl F. Doerner & Richard F. Hartl & Martin W. P. Savelsbergh & Wolfgang Stoecher, 2009. "A Hybrid Solution Approach for Ready-Mixed Concrete Delivery," Transportation Science, INFORMS, vol. 43(1), pages 70-85, February.
    17. Berbeglia, Gerardo & Cordeau, Jean-François & Laporte, Gilbert, 2010. "Dynamic pickup and delivery problems," European Journal of Operational Research, Elsevier, vol. 202(1), pages 8-15, April.
    18. Cortés, Cristián E. & Matamala, Martín & Contardo, Claudio, 2010. "The pickup and delivery problem with transfers: Formulation and a branch-and-cut solution method," European Journal of Operational Research, Elsevier, vol. 200(3), pages 711-724, February.
    19. Nanry, William P. & Wesley Barnes, J., 2000. "Solving the pickup and delivery problem with time windows using reactive tabu search," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 107-121, February.
    20. Prodhon, Caroline & Prins, Christian, 2014. "A survey of recent research on location-routing problems," European Journal of Operational Research, Elsevier, vol. 238(1), pages 1-17.
    21. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    22. Christophe Duhamel & Jean-Yves Potvin & Jean-Marc Rousseau, 1997. "A Tabu Search Heuristic for the Vehicle Routing Problem with Backhauls and Time Windows," Transportation Science, INFORMS, vol. 31(1), pages 49-59, February.
    23. Zhang, Ruiyou & Yun, Won Young & Moon, Il Kyeong, 2011. "Modeling and optimization of a container drayage problem with resource constraints," International Journal of Production Economics, Elsevier, vol. 133(1), pages 351-359, September.
    24. Wy, Juyoung & Kim, Byung-In & Kim, Seongbae, 2013. "The rollon–rolloff waste collection vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 224(3), pages 466-476.
    25. Martin W. P. Savelsbergh, 1992. "The Vehicle Routing Problem with Time Windows: Minimizing Route Duration," INFORMS Journal on Computing, INFORMS, vol. 4(2), pages 146-154, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Escudero-Santana, Alejandro & Muñuzuri, Jesús & Cortés, Pablo & Onieva, Luis, 2021. "The one container drayage problem with soft time windows," Research in Transportation Economics, Elsevier, vol. 90(C).
    2. Wolfinger, David & Salazar-González, Juan-José, 2021. "The Pickup and Delivery Problem with Split Loads and Transshipments: A Branch-and-Cut Solution Approach," European Journal of Operational Research, Elsevier, vol. 289(2), pages 470-484.
    3. Arnau, Quim & Barrena, Eva & Panadero, Javier & de la Torre, Rocio & Juan, Angel A., 2022. "A biased-randomized discrete-event heuristic for coordinated multi-vehicle container transport across interconnected networks," European Journal of Operational Research, Elsevier, vol. 302(1), pages 348-362.
    4. Shejun Deng & Yingying Yuan & Yong Wang & Haizhong Wang & Charles Koll, 2020. "Collaborative multicenter logistics delivery network optimization with resource sharing," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-31, November.
    5. Marques, Alexandra & Soares, Ricardo & Santos, Maria João & Amorim, Pedro, 2020. "Integrated planning of inbound and outbound logistics with a Rich Vehicle Routing Problem with backhauls," Omega, Elsevier, vol. 92(C).
    6. Bertazzi, Luca & Moezi, Sarem Deilami & Maggioni, Francesca, 2021. "The value of integration of full container load, less than container load and air freight shipments in vendor–managed inventory systems," International Journal of Production Economics, Elsevier, vol. 241(C).
    7. David Wolfinger & Fabien Tricoire & Karl F. Doerner, 2019. "A matheuristic for a multimodal long haul routing problem," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(4), pages 397-433, December.
    8. Soares, Ricardo & Marques, Alexandra & Amorim, Pedro & Rasinmäki, Jussi, 2019. "Multiple vehicle synchronisation in a full truck-load pickup and delivery problem: A case-study in the biomass supply chain," European Journal of Operational Research, Elsevier, vol. 277(1), pages 174-194.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lahyani, Rahma & Khemakhem, Mahdi & Semet, Frédéric, 2015. "Rich vehicle routing problems: From a taxonomy to a definition," European Journal of Operational Research, Elsevier, vol. 241(1), pages 1-14.
    2. Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2020. "Integrating first-mile pickup and last-mile delivery on shared vehicle routes for efficient urban e-commerce distribution," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 26-62.
    3. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    4. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    5. Regnier-Coudert, Olivier & McCall, John & Ayodele, Mayowa & Anderson, Steven, 2016. "Truck and trailer scheduling in a real world, dynamic and heterogeneous context," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 389-408.
    6. Phuong Khanh Nguyen & Teodor Gabriel Crainic & Michel Toulouse, 2017. "Multi-trip pickup and delivery problem with time windows and synchronization," Annals of Operations Research, Springer, vol. 253(2), pages 899-934, June.
    7. Liu, Ran & Xie, Xiaolan & Augusto, Vincent & Rodriguez, Carlos, 2013. "Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care," European Journal of Operational Research, Elsevier, vol. 230(3), pages 475-486.
    8. Ting, Chuan-Kang & Liao, Xin-Lan, 2013. "The selective pickup and delivery problem: Formulation and a memetic algorithm," International Journal of Production Economics, Elsevier, vol. 141(1), pages 199-211.
    9. Abdulkader, M.M.S. & Gajpal, Yuvraj & ElMekkawy, Tarek Y., 2018. "Vehicle routing problem in omni-channel retailing distribution systems," International Journal of Production Economics, Elsevier, vol. 196(C), pages 43-55.
    10. Capelle, Thomas & Cortés, Cristián E. & Gendreau, Michel & Rey, Pablo A. & Rousseau, Louis-Martin, 2019. "A column generation approach for location-routing problems with pickup and delivery," European Journal of Operational Research, Elsevier, vol. 272(1), pages 121-131.
    11. Michael Drexl, 2018. "On the One-to-One Pickup-and-Delivery Problem with Time Windows and Trailers," Working Papers 1816, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    12. Jie, Wanchen & Yang, Jun & Zhang, Min & Huang, Yongxi, 2019. "The two-echelon capacitated electric vehicle routing problem with battery swapping stations: Formulation and efficient methodology," European Journal of Operational Research, Elsevier, vol. 272(3), pages 879-904.
    13. Xue, Li & Luo, Zhixing & Lim, Andrew, 2016. "Exact approaches for the pickup and delivery problem with loading cost," Omega, Elsevier, vol. 59(PB), pages 131-145.
    14. Michael Drexl, 2021. "On the one-to-one pickup-and-delivery problem with time windows and trailers," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(3), pages 1115-1162, September.
    15. Schaumann, Sarah K. & Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2023. "Route efficiency implications of time windows and vehicle capacities in first- and last-mile logistics," European Journal of Operational Research, Elsevier, vol. 311(1), pages 88-111.
    16. Yuan Qu & Jonathan F. Bard, 2015. "A Branch-and-Price-and-Cut Algorithm for Heterogeneous Pickup and Delivery Problems with Configurable Vehicle Capacity," Transportation Science, INFORMS, vol. 49(2), pages 254-270, May.
    17. Renaud Masson & Fabien Lehuédé & Olivier Péton, 2013. "An Adaptive Large Neighborhood Search for the Pickup and Delivery Problem with Transfers," Transportation Science, INFORMS, vol. 47(3), pages 344-355, August.
    18. Naji-Azimi, Zahra & Salari, Majid & Renaud, Jacques & Ruiz, Angel, 2016. "A practical vehicle routing problem with desynchronized arrivals to depot," European Journal of Operational Research, Elsevier, vol. 255(1), pages 58-67.
    19. Kalayci, Can B. & Kulak, Osman & Günther, Hans-Otto, 2015. "A perturbation based variable neighborhood search heuristic for solving the Vehicle Routing Problem with Simultaneous Pickup and Delivery with Time LimitAuthor-Name: Polat, Olcay," European Journal of Operational Research, Elsevier, vol. 242(2), pages 369-382.
    20. Bustos-Coral, Daniel & Costa, Alysson M., 2022. "Drayage routing with heterogeneous fleet, compatibility constraints, and truck load configurations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:248:y:2016:i:2:p:487-506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.