IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v51y2006i1p267-286.html
   My bibliography  Save this article

Least squares estimation of a linear regression model with LR fuzzy response

Author

Listed:
  • Coppi, Renato
  • D'Urso, Pierpaolo
  • Giordani, Paolo
  • Santoro, Adriana

Abstract

No abstract is available for this item.

Suggested Citation

  • Coppi, Renato & D'Urso, Pierpaolo & Giordani, Paolo & Santoro, Adriana, 2006. "Least squares estimation of a linear regression model with LR fuzzy response," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 267-286, November.
  • Handle: RePEc:eee:csdana:v:51:y:2006:i:1:p:267-286
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(06)00133-2
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. López-Diaz, Miguel & Gil, Maria Angeles, 1997. "Constructive definitions of fuzzy random variables," Statistics & Probability Letters, Elsevier, vol. 36(2), pages 135-143, December.
    2. D'Urso, Pierpaolo & Gastaldi, Tommaso, 2000. "A least-squares approach to fuzzy linear regression analysis," Computational Statistics & Data Analysis, Elsevier, vol. 34(4), pages 427-440, October.
    3. Kim, Kwang Jae & Moskowitz, Herbert & Koksalan, Murat, 1996. "Fuzzy versus statistical linear regression," European Journal of Operational Research, Elsevier, vol. 92(2), pages 417-434, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Colubi, Ana & Ramos-Guajardo, Ana Belén, 2023. "Fuzzy sets and (fuzzy) random sets in Econometrics and Statistics," Econometrics and Statistics, Elsevier, vol. 26(C), pages 84-98.
    2. Roldán López de Hierro, Antonio Francisco & Martínez-Moreno, Juan & Aguilar Peña, Concepción & Roldán López de Hierro, Concepción, 2016. "A fuzzy regression approach using Bernstein polynomials for the spreads: Computational aspects and applications to economic models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 128(C), pages 13-25.
    3. Pierpaolo D’Urso & Riccardo Massari, 2013. "Weighted Least Squares and Least Median Squares estimation for the fuzzy linear regression analysis," METRON, Springer;Sapienza Università di Roma, vol. 71(3), pages 279-306, November.
    4. Ana Colubi & Renato Coppi & Pierpaolo D’urso & Maria angeles Gil, 2007. "Statistics with fuzzy random variables," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 277-303.
    5. Gholamreza Hesamian & Arne Johannssen & Nataliya Chukhrova, 2023. "A Three-Stage Nonparametric Kernel-Based Time Series Model Based on Fuzzy Data," Mathematics, MDPI, vol. 11(13), pages 1-17, June.
    6. Pierpaolo D’Urso & Marta Disegna & Riccardo Massari, 2020. "Satisfaction and Tourism Expenditure Behaviour," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 149(3), pages 1081-1106, June.
    7. Maria Ferraro & Paolo Giordani, 2012. "A multiple linear regression model for imprecise information," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(8), pages 1049-1068, November.
    8. Pierpaolo D’Urso & María Ángeles Gil, 2017. "Fuzzy data analysis and classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 645-657, December.
    9. Gholamreza Hesamian & Faezeh Torkian & Arne Johannssen & Nataliya Chukhrova, 2023. "An Exponential Autoregressive Time Series Model for Complex Data," Mathematics, MDPI, vol. 11(19), pages 1-12, September.
    10. Coppi, Renato & Gil, Maria A. & Kiers, Henk A.L., 2006. "The fuzzy approach to statistical analysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 1-14, November.
    11. D'Urso, Pierpaolo & Santoro, Adriana, 2006. "Fuzzy clusterwise linear regression analysis with symmetrical fuzzy output variable," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 287-313, November.
    12. Colubi, Ana & Gonzalez-Rodriguez, Gil, 2007. "Triangular fuzzification of random variables and power of distribution tests: Empirical discussion," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4742-4750, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierpaolo D’Urso & Marta Disegna & Riccardo Massari, 2020. "Satisfaction and Tourism Expenditure Behaviour," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 149(3), pages 1081-1106, June.
    2. Wu, Hsien-Chung, 2003. "Fuzzy estimates of regression parameters in linear regression models for imprecise input and output data," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 203-217, February.
    3. Pierpaolo D’Urso & Riccardo Massari, 2013. "Weighted Least Squares and Least Median Squares estimation for the fuzzy linear regression analysis," METRON, Springer;Sapienza Università di Roma, vol. 71(3), pages 279-306, November.
    4. Colubi, Ana & Ramos-Guajardo, Ana Belén, 2023. "Fuzzy sets and (fuzzy) random sets in Econometrics and Statistics," Econometrics and Statistics, Elsevier, vol. 26(C), pages 84-98.
    5. Pavel Škrabánek & Jaroslav Marek & Alena Pozdílková, 2021. "Boscovich Fuzzy Regression Line," Mathematics, MDPI, vol. 9(6), pages 1-14, March.
    6. D'Urso, Pierpaolo & Giordani, Paolo, 2003. "A least squares approach to Principal Component Analysis for interval valued data," Economics & Statistics Discussion Papers esdp03013, University of Molise, Department of Economics.
    7. Alfred Mbairadjim Moussa & Jules Sadefo Kamdem, 2022. "A fuzzy multifactor asset pricing model," Annals of Operations Research, Springer, vol. 313(2), pages 1221-1241, June.
    8. Volker Krätschmer, 2006. "Integrals of random fuzzy sets," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(2), pages 433-469, September.
    9. Koissi, Marie-Claire & Shapiro, Arnold F., 2006. "Fuzzy formulation of the Lee-Carter model for mortality forecasting," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 287-309, December.
    10. F-M Tseng, 2008. "Quadratic interval innovation diffusion models for new product sales forecasting," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1120-1127, August.
    11. Carmen Nadia Ciocoiu & Adina Liliana Prioteasa & Sofia Elena Colesca, 2020. "Risk Management Implementation for Sustainable Development of Romanian SMEs: A Fuzzy Approach ...........," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 22(55), pages 726-726, August.
    12. M. Gil & M. López-García & M. Lubiano & Manuel Montenegro, 2001. "Regression and correlation analyses of a linear relation between random intervals," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(1), pages 183-201, June.
    13. Giordani, Paolo & Kiers, Henk A. L., 2004. "Principal Component Analysis of symmetric fuzzy data," Computational Statistics & Data Analysis, Elsevier, vol. 45(3), pages 519-548, April.
    14. D'Urso, Pierpaolo & Gastaldi, Tommaso, 2000. "A least-squares approach to fuzzy linear regression analysis," Computational Statistics & Data Analysis, Elsevier, vol. 34(4), pages 427-440, October.
    15. Enrico Ciavolino & Antonio Calcagnì, 2014. "A generalized maximum entropy (GME) approach for crisp-input/fuzzy-output regression model," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(6), pages 3401-3414, November.
    16. Kim, Kwang-Jae & Moskowitz, Herbert & Dhingra, Anoop & Evans, Gerald, 2000. "Fuzzy multicriteria models for quality function deployment," European Journal of Operational Research, Elsevier, vol. 121(3), pages 504-518, March.
    17. D'Urso, Pierpaolo, 2003. "Linear regression analysis for fuzzy/crisp input and fuzzy/crisp output data," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 47-72, February.
    18. Gil, Maria Angeles & Lopez-Diaz, Miguel & Lopez-Garcia, Hortensia, 1998. "The fuzzy hyperbolic inequality index associated with fuzzy random variables," European Journal of Operational Research, Elsevier, vol. 110(2), pages 377-391, October.
    19. Jin Hee Yoon & Przemyslaw Grzegorzewski, 2020. "On Optimal and Asymptotic Properties of a Fuzzy L 2 Estimator," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    20. Azadeh, A. & Saberi, M. & Seraj, O., 2010. "An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: A case study of Iran," Energy, Elsevier, vol. 35(6), pages 2351-2366.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:51:y:2006:i:1:p:267-286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.