IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v54y2003i7d10.1057_palgrave.jors.2601574.html
   My bibliography  Save this article

Simulation of single start station for Edmonton EMS

Author

Listed:
  • A Ingolfsson

    (University of Alberta)

  • E Erkut

    (University of Alberta)

  • S Budge

    (University of Alberta)

Abstract

The City of Edmonton's Emergency Medical Services (EMS) department proposed to move to a ‘single start station system’ (SS system) in which all ambulances would begin and end their shifts at the same location. We developed a discrete event simulation model to estimate the impact of this change and subsequently used this model to explore other changes to Edmonton EMS operations, including the addition of stations, the addition of ambulances, different shifts, and a different redeployment system. We found that a SS system increased average unit availability and the fraction of calls reached within the department's response time standard, particularly during the current shift changeover periods. The paper describes the development and validation of the simulation model and summarizes the results of its application.

Suggested Citation

  • A Ingolfsson & E Erkut & S Budge, 2003. "Simulation of single start station for Edmonton EMS," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(7), pages 736-746, July.
  • Handle: RePEc:pal:jorsoc:v:54:y:2003:i:7:d:10.1057_palgrave.jors.2601574
    DOI: 10.1057/palgrave.jors.2601574
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2601574
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2601574?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark S. Daskin, 1983. "A Maximum Expected Covering Location Model: Formulation, Properties and Heuristic Solution," Transportation Science, INFORMS, vol. 17(1), pages 48-70, February.
    2. E. S. Savas, 1969. "Simulation and Cost-Effectiveness Analysis of New York's Emergency Ambulance Service," Management Science, INFORMS, vol. 15(12), pages 608-627, August.
    3. Goldberg, Jeffrey & Dietrich, Robert & Chen, Jen Ming & Mitwasi, Mousa & Valenzuela, Terry & Criss, Elizabeth, 1990. "A simulation model for evaluating a set of emergency vehicle base locations: Development, validation, and usage," Socio-Economic Planning Sciences, Elsevier, vol. 24(2), pages 125-141.
    4. Peter Kolesar & Warren Walker & Jack Hausner, 1975. "Determining the Relation between Fire Engine Travel Times and Travel Distances in New York City," Operations Research, INFORMS, vol. 23(4), pages 614-627, August.
    5. Peter Kolesar, 1975. "A Model for Predicting Average Fire Engine Travel Times," Operations Research, INFORMS, vol. 23(4), pages 603-613, August.
    6. J. P. Jarvis, 1985. "Approximating the Equilibrium Behavior of Multi-Server Loss Systems," Management Science, INFORMS, vol. 31(2), pages 235-239, February.
    7. S I Harewood, 2002. "Emergency ambulance deployment in Barbados: a multi-objective approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(2), pages 185-192, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. F. Javier Otamendi & David García-Heredia, 2015. "Isochrones as Indicators of the Influence of Traffic in Public Health: A Visual Simulation Application in Ávila, Spain," IJERPH, MDPI, vol. 12(10), pages 1-21, October.
    2. Nabil Channouf & Pierre L’Ecuyer & Armann Ingolfsson & Athanassios Avramidis, 2007. "The application of forecasting techniques to modeling emergency medical system calls in Calgary, Alberta," Health Care Management Science, Springer, vol. 10(1), pages 25-45, February.
    3. Abo-Hamad, Waleed & Arisha, Amr, 2013. "Simulation-based framework to improve patient experience in an emergency department," European Journal of Operational Research, Elsevier, vol. 224(1), pages 154-166.
    4. Matthew S. Maxwell & Mateo Restrepo & Shane G. Henderson & Huseyin Topaloglu, 2010. "Approximate Dynamic Programming for Ambulance Redeployment," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 266-281, May.
    5. Roberto Aringhieri & Giuliana Carello & Daniela Morale, 2016. "Supporting decision making to improve the performance of an Italian Emergency Medical Service," Annals of Operations Research, Springer, vol. 236(1), pages 131-148, January.
    6. Ridler, Samuel & Mason, Andrew J. & Raith, Andrea, 2022. "A simulation and optimisation package for emergency medical services," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1101-1113.
    7. Karatas, Mumtaz & Yakıcı, Ertan, 2019. "An analysis of p-median location problem: Effects of backup service level and demand assignment policy," European Journal of Operational Research, Elsevier, vol. 272(1), pages 207-218.
    8. Rania Boujemaa & Aida Jebali & Sondes Hammami & Angel Ruiz & Hanen Bouchriha, 2018. "A stochastic approach for designing two-tiered emergency medical service systems," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 123-152, June.
    9. Susan Budge & Armann Ingolfsson & Dawit Zerom, 2010. "Empirical Analysis of Ambulance Travel Times: The Case of Calgary Emergency Medical Services," Management Science, INFORMS, vol. 56(4), pages 716-723, April.
    10. N C Simpson & P G Hancock, 2009. "Fifty years of operational research and emergency response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 126-139, May.
    11. Roberto Aringhieri & Giuliana Carello & Daniela Morale, 2016. "Supporting decision making to improve the performance of an Italian Emergency Medical Service," Annals of Operations Research, Springer, vol. 236(1), pages 131-148, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shariat-Mohaymany, Afshin & Babaei, Mohsen & Moadi, Saeed & Amiripour, Sayyed Mahdi, 2012. "Linear upper-bound unavailability set covering models for locating ambulances: Application to Tehran rural roads," European Journal of Operational Research, Elsevier, vol. 221(1), pages 263-272.
    2. Xueping Li & Zhaoxia Zhao & Xiaoyan Zhu & Tami Wyatt, 2011. "Covering models and optimization techniques for emergency response facility location and planning: a review," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 281-310, December.
    3. McCormack, Richard & Coates, Graham, 2015. "A simulation model to enable the optimization of ambulance fleet allocation and base station location for increased patient survival," European Journal of Operational Research, Elsevier, vol. 247(1), pages 294-309.
    4. Sorensen, Paul & Church, Richard, 2010. "Integrating expected coverage and local reliability for emergency medical services location problems," Socio-Economic Planning Sciences, Elsevier, vol. 44(1), pages 8-18, March.
    5. N C Simpson & P G Hancock, 2009. "Fifty years of operational research and emergency response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 126-139, May.
    6. Kenneth C. Chong & Shane G. Henderson & Mark E. Lewis, 2016. "The Vehicle Mix Decision in Emergency Medical Service Systems," Manufacturing & Service Operations Management, INFORMS, vol. 18(3), pages 347-360, July.
    7. Geroliminis, Nikolas & Kepaptsoglou, Konstantinos & Karlaftis, Matthew G., 2011. "A hybrid hypercube - Genetic algorithm approach for deploying many emergency response mobile units in an urban network," European Journal of Operational Research, Elsevier, vol. 210(2), pages 287-300, April.
    8. Sun Hoon Kim & Young Hoon Lee, 2016. "Iterative optimization algorithm with parameter estimation for the ambulance location problem," Health Care Management Science, Springer, vol. 19(4), pages 362-382, December.
    9. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    10. Erhan Erkut & Armann Ingolfsson & Güneş Erdoğan, 2008. "Ambulance location for maximum survival," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(1), pages 42-58, February.
    11. Ana Iannoni & Reinaldo Morabito & Cem Saydam, 2008. "A hypercube queueing model embedded into a genetic algorithm for ambulance deployment on highways," Annals of Operations Research, Springer, vol. 157(1), pages 207-224, January.
    12. Rajagopalan, Hari K. & Saydam, Cem, 2009. "A minimum expected response model: Formulation, heuristic solution, and application," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 253-262, December.
    13. Soovin Yoon & Laura A. Albert, 2018. "An expected coverage model with a cutoff priority queue," Health Care Management Science, Springer, vol. 21(4), pages 517-533, December.
    14. Venkateshan, Prahalad & Mathur, Kamlesh & Ballou, Ronald H., 2010. "Locating and staffing service centers under service level constraints," European Journal of Operational Research, Elsevier, vol. 201(1), pages 55-70, February.
    15. Yoon, Soovin & Albert, Laura A., 2021. "Dynamic dispatch policies for emergency response with multiple types of vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    16. Zvi Drezner & Vladimir Marianov & George O. Wesolowsky, 2016. "Maximizing the minimum cover probability by emergency facilities," Annals of Operations Research, Springer, vol. 246(1), pages 349-362, November.
    17. Soo-Haeng Cho & Hoon Jang & Taesik Lee & John Turner, 2014. "Simultaneous Location of Trauma Centers and Helicopters for Emergency Medical Service Planning," Operations Research, INFORMS, vol. 62(4), pages 751-771, August.
    18. Ansari, Sardar & Yoon, Soovin & Albert, Laura A., 2017. "An approximate hypercube model for public service systems with co-located servers and multiple response," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 143-157.
    19. Boyacı, Burak & Geroliminis, Nikolas, 2015. "Approximation methods for large-scale spatial queueing systems," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 151-181.
    20. Bélanger, V. & Lanzarone, E. & Nicoletta, V. & Ruiz, A. & Soriano, P., 2020. "A recursive simulation-optimization framework for the ambulance location and dispatching problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 713-725.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:54:y:2003:i:7:d:10.1057_palgrave.jors.2601574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.