A stochastic approach for designing two-tiered emergency medical service systems
Author
Abstract
Suggested Citation
DOI: 10.1007/s10696-017-9286-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mark S. Daskin, 1983. "A Maximum Expected Covering Location Model: Formulation, Properties and Heuristic Solution," Transportation Science, INFORMS, vol. 17(1), pages 48-70, February.
- Richard C. Larson, 1975. "Approximating the Performance of Urban Emergency Service Systems," Operations Research, INFORMS, vol. 23(5), pages 845-868, October.
- Lubicz, Marek & Mielczarek, Bozena, 1987. "Simulation modelling of emergency medical services," European Journal of Operational Research, Elsevier, vol. 29(2), pages 178-185, May.
- Y. Kergosien & V. Bélanger & P. Soriano & M. Gendreau & A. Ruiz, 2015. "A generic and flexible simulation-based analysis tool for EMS management," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7299-7316, December.
- Zied Jemai & Lina Aboueljinane & Evren Sahin, 2012. "Reducing ambulance response time using simulation: The case of Val-de-Marne department emergency medical service," Post-Print hal-01672421, HAL.
- Beraldi, P. & Bruni, M. E. & Conforti, D., 2004. "Designing robust emergency medical service via stochastic programming," European Journal of Operational Research, Elsevier, vol. 158(1), pages 183-193, October.
- E. S. Savas, 1969. "Simulation and Cost-Effectiveness Analysis of New York's Emergency Ambulance Service," Management Science, INFORMS, vol. 15(12), pages 608-627, August.
- ReVelle, Charles & Marianov, Vladimir, 1991. "A probabilistic FLEET model with individual vehicle reliability requirements," European Journal of Operational Research, Elsevier, vol. 53(1), pages 93-105, July.
- Zhi-Hai Zhang & Kang Li, 2015. "A novel probabilistic formulation for locating and sizing emergency medical service stations," Annals of Operations Research, Springer, vol. 229(1), pages 813-835, June.
- Geroliminis, Nikolas & Kepaptsoglou, Konstantinos & Karlaftis, Matthew G., 2011. "A hybrid hypercube - Genetic algorithm approach for deploying many emergency response mobile units in an urban network," European Journal of Operational Research, Elsevier, vol. 210(2), pages 287-300, April.
- Michael O. Ball & Feng L. Lin, 1993. "A Reliability Model Applied to Emergency Service Vehicle Location," Operations Research, INFORMS, vol. 41(1), pages 18-36, February.
- Nilay Noyan, 2010. "Alternate risk measures for emergency medical service system design," Annals of Operations Research, Springer, vol. 181(1), pages 559-589, December.
- Richard Church & Charles R. Velle, 1974. "The Maximal Covering Location Problem," Papers in Regional Science, Wiley Blackwell, vol. 32(1), pages 101-118, January.
- Beraldi, P. & Bruni, M.E., 2009. "A probabilistic model applied to emergency service vehicle location," European Journal of Operational Research, Elsevier, vol. 196(1), pages 323-331, July.
- A Ingolfsson & E Erkut & S Budge, 2003. "Simulation of single start station for Edmonton EMS," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(7), pages 736-746, July.
- T Andersson & P Värbrand, 2007. "Decision support tools for ambulance dispatch and relocation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(2), pages 195-201, February.
- Iannoni, Ana Paula & Morabito, Reinaldo & Saydam, Cem, 2011. "Optimizing large-scale emergency medical system operations on highways using the hypercube queuing model," Socio-Economic Planning Sciences, Elsevier, vol. 45(3), pages 105-117, September.
- Armann Ingolfsson & Susan Budge & Erhan Erkut, 2008. "Optimal ambulance location with random delays and travel times," Health Care Management Science, Springer, vol. 11(3), pages 262-274, September.
- Laura McLay, 2009. "A maximum expected covering location model with two types of servers," IISE Transactions, Taylor & Francis Journals, vol. 41(8), pages 730-741.
- Swoveland, C. & Uyeno, D. & Vertinsky, I. & Vickson, R., 1973. "A simulation-based methodology for optimization of ambulance service policies," Socio-Economic Planning Sciences, Elsevier, vol. 7(6), pages 697-703, December.
- Schmid, Verena, 2012. "Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming," European Journal of Operational Research, Elsevier, vol. 219(3), pages 611-621.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sondes Hammami & Aida Jebali, 2021. "Designing modular capacitated emergency medical service using information on ambulance trip," Operational Research, Springer, vol. 21(3), pages 1723-1742, September.
- Wang, Wei & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2022. "EMS location-allocation problem under uncertainties," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
- Harrou, Fouzi & Dairi, Abdelkader & Kadri, Farid & Sun, Ying, 2020. "Forecasting emergency department overcrowding: A deep learning framework," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Bélanger, V. & Lanzarone, E. & Nicoletta, V. & Ruiz, A. & Soriano, P., 2020. "A recursive simulation-optimization framework for the ambulance location and dispatching problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 713-725.
- Soovin Yoon & Laura A. Albert & Veronica M. White, 2021. "A Stochastic Programming Approach for Locating and Dispatching Two Types of Ambulances," Transportation Science, INFORMS, vol. 55(2), pages 275-296, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bélanger, V. & Lanzarone, E. & Nicoletta, V. & Ruiz, A. & Soriano, P., 2020. "A recursive simulation-optimization framework for the ambulance location and dispatching problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 713-725.
- Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
- Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
- Nelas, José & Dias, Joana, 2020. "Optimal Emergency Vehicles Location: An approach considering the hierarchy and substitutability of resources," European Journal of Operational Research, Elsevier, vol. 287(2), pages 583-599.
- Sondes Hammami & Aida Jebali, 2021. "Designing modular capacitated emergency medical service using information on ambulance trip," Operational Research, Springer, vol. 21(3), pages 1723-1742, September.
- Zhi-Hai Zhang & Kang Li, 2015. "A novel probabilistic formulation for locating and sizing emergency medical service stations," Annals of Operations Research, Springer, vol. 229(1), pages 813-835, June.
- Boyacı, Burak & Geroliminis, Nikolas, 2015. "Approximation methods for large-scale spatial queueing systems," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 151-181.
- McCormack, Richard & Coates, Graham, 2015. "A simulation model to enable the optimization of ambulance fleet allocation and base station location for increased patient survival," European Journal of Operational Research, Elsevier, vol. 247(1), pages 294-309.
- Liu, Kanglin & Li, Qiaofeng & Zhang, Zhi-Hai, 2019. "Distributionally robust optimization of an emergency medical service station location and sizing problem with joint chance constraints," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 79-101.
- Sardar Ansari & Laura Albert McLay & Maria E. Mayorga, 2017. "A Maximum Expected Covering Problem for District Design," Transportation Science, INFORMS, vol. 51(1), pages 376-390, February.
- Kenneth C. Chong & Shane G. Henderson & Mark E. Lewis, 2016. "The Vehicle Mix Decision in Emergency Medical Service Systems," Manufacturing & Service Operations Management, INFORMS, vol. 18(3), pages 347-360, July.
- Su, Qiang & Luo, Qinyi & Huang, Samuel H., 2015. "Cost-effective analyses for emergency medical services deployment: A case study in Shanghai," International Journal of Production Economics, Elsevier, vol. 163(C), pages 112-123.
- Soovin Yoon & Laura A. Albert, 2018. "An expected coverage model with a cutoff priority queue," Health Care Management Science, Springer, vol. 21(4), pages 517-533, December.
- Carvalho, A.S. & Captivo, M.E. & Marques, I., 2020. "Integrating the ambulance dispatching and relocation problems to maximize system’s preparedness," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1064-1080.
- Shariat-Mohaymany, Afshin & Babaei, Mohsen & Moadi, Saeed & Amiripour, Sayyed Mahdi, 2012. "Linear upper-bound unavailability set covering models for locating ambulances: Application to Tehran rural roads," European Journal of Operational Research, Elsevier, vol. 221(1), pages 263-272.
- Nilay Noyan, 2010. "Alternate risk measures for emergency medical service system design," Annals of Operations Research, Springer, vol. 181(1), pages 559-589, December.
- Lee, Yu-Ching & Chen, Yu-Shih & Chen, Albert Y., 2022. "Lagrangian dual decomposition for the ambulance relocation and routing considering stochastic demand with the truncated Poisson," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 1-23.
- Bertsimas, Dimitris & Ng, Yeesian, 2019. "Robust and stochastic formulations for ambulance deployment and dispatch," European Journal of Operational Research, Elsevier, vol. 279(2), pages 557-571.
- Ibrahim Çapar & Sharif H Melouk & Burcu B Keskin, 2017. "Alternative metrics to measure EMS system performance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(7), pages 792-808, July.
- Ridler, Samuel & Mason, Andrew J. & Raith, Andrea, 2022. "A simulation and optimisation package for emergency medical services," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1101-1113.
More about this item
Keywords
Stochastic programming; Emergency medical services (EMS); Location-allocation model; Sample average approximation (SAA);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:30:y:2018:i:1:d:10.1007_s10696-017-9286-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.