IDEAS home Printed from https://ideas.repec.org/a/ove/journl/aid19622.html
   My bibliography  Save this article

When two banks fall, how do markets react?

Author

Listed:
  • Dora Almeida
  • Andreia Dionísio
  • Paulo Ferreira

Abstract

The most recent fall of the Silicon Valley (SVB) and Credit Suisse (CS) banks increased the fear of a worldwide banking crisis. We analyse the impacts of their fall on five financial indices. We apply detrended fluctuation analysis, static and with sliding windows. We find a higher impact of the SVB fall on the efficiency dynamic of the studied indices, which revealed fluctuating efficiency and a loss of efficiency during the period of the falls. The fall of both banks contributed to some persistence in stock indices returns. The Nasdaq and STOXX Europe 600 Banks are the most and the least efficient indices, respectively. Despite the apparent evidence of inefficiency, it might not necessarily mean a capacity for abnormal profits.

Suggested Citation

  • Dora Almeida & Andreia Dionísio & Paulo Ferreira, 2023. "When two banks fall, how do markets react?," Economics and Business Letters, Oviedo University Press, vol. 12(4), pages 331-341.
  • Handle: RePEc:ove:journl:aid:19622
    as

    Download full text from publisher

    File URL: https://reunido.uniovi.es/index.php/EBL/article/view/19622
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paulo Ferreira, 2020. "Dynamic long-range dependences in the Swiss stock market," Empirical Economics, Springer, vol. 58(4), pages 1541-1573, April.
    2. Natália Costa & César Silva & Paulo Ferreira, 2019. "Long-Range Behaviour and Correlation in DFA and DCCA Analysis of Cryptocurrencies," IJFS, MDPI, vol. 7(3), pages 1-12, September.
    3. Paulo Ferreira & Andreia Dion�sio, 2014. "Revisiting serial dependence in the stock markets of the G7 countries, Portugal, Spain and Greece," Applied Financial Economics, Taylor & Francis Journals, vol. 24(5), pages 319-331, March.
    4. Cajueiro, Daniel O. & Tabak, Benjamin M., 2006. "Testing for predictability in equity returns for European transition markets," Economic Systems, Elsevier, vol. 30(1), pages 56-78, March.
    5. Cao, Guangxi & Zhang, Minjia, 2015. "Extreme values in the Chinese and American stock markets based on detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 25-35.
    6. Anagnostidis, P. & Varsakelis, C. & Emmanouilides, C.J., 2016. "Has the 2008 financial crisis affected stock market efficiency? The case of Eurozone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 116-128.
    7. Cajueiro, Daniel O. & Tabak, Benjamin M., 2008. "Testing for time-varying long-range dependence in real state equity returns," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 293-307.
    8. Cajueiro, Daniel O. & Tabak, Benjamin M., 2004. "Evidence of long range dependence in Asian equity markets: the role of liquidity and market restrictions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(3), pages 656-664.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferreira, Paulo, 2018. "Long-range dependencies of Eastern European stock markets: A dynamic detrended analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 454-470.
    2. Natália Costa & César Silva & Paulo Ferreira, 2019. "Long-Range Behaviour and Correlation in DFA and DCCA Analysis of Cryptocurrencies," IJFS, MDPI, vol. 7(3), pages 1-12, September.
    3. Paulo Ferreira & Luís Carlos Loures, 2020. "An Econophysics Study of the S&P Global Clean Energy Index," Sustainability, MDPI, vol. 12(2), pages 1-9, January.
    4. Ferreira, Paulo & Dionísio, Andreia & Guedes, Everaldo Freitas & Zebende, Gilney Figueira, 2018. "A sliding windows approach to analyse the evolution of bank shares in the European Union," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1355-1367.
    5. Ferreira, Paulo & Quintino, Derick & Wundervald, Bruna & Dionísio, Andreia & Aslam, Faheem & Cantarinha, Ana, 2021. "Is Brazilian music getting more predictable? A statistical physics approach for different music genres," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    6. Ferreira, Paulo, 2018. "Efficiency or speculation? A time-varying analysis of European sovereign debt," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1295-1308.
    7. Ferreira, Paulo & Dionísio, Andreia & Correia, José, 2018. "Non-linear dependencies in African stock markets: Was subprime crisis an important factor?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 680-687.
    8. Paulo Ferreira, 2020. "Dynamic long-range dependences in the Swiss stock market," Empirical Economics, Springer, vol. 58(4), pages 1541-1573, April.
    9. Oussama Tilfani & Paulo Ferreira & Andreia Dionisio & My Youssef El Boukfaoui, 2020. "EU Stock Markets vs. Germany, UK and US: Analysis of Dynamic Comovements Using Time-Varying DCCA Correlation Coefficients," JRFM, MDPI, vol. 13(5), pages 1-23, May.
    10. Ferreira, Paulo, 2019. "Assessing the relationship between dependence and volume in stock markets: A dynamic analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 90-97.
    11. Oussama Tilfani & Paulo Ferreira & My Youssef El Boukfaoui, 2021. "Dynamic cross-correlation and dynamic contagion of stock markets: a sliding windows approach with the DCCA correlation coefficient," Empirical Economics, Springer, vol. 60(3), pages 1127-1156, March.
    12. Zhuang, Xiaoyang & Wei, Yu & Ma, Feng, 2015. "Multifractality, efficiency analysis of Chinese stock market and its cross-correlation with WTI crude oil price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 101-113.
    13. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
    14. Laura Raisa Miloş & Cornel Haţiegan & Marius Cristian Miloş & Flavia Mirela Barna & Claudiu Boțoc, 2020. "Multifractal Detrended Fluctuation Analysis (MF-DFA) of Stock Market Indexes. Empirical Evidence from Seven Central and Eastern European Markets," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    15. Thiago Christiano Silva & Benjamin Miranda Tabak & Idamar Magalhães Ferreira, 2019. "Modeling Investor Behavior Using Machine Learning: Mean-Reversion and Momentum Trading Strategies," Complexity, Hindawi, vol. 2019, pages 1-14, December.
    16. Vinodh Madhavan & Rakesh Arrawatia, 2016. "Relative Efficiency of G8 Sovereign Credit Default Swaps and Bond Scrips: An Adaptive Market Hypothesis Perspective," Studies in Microeconomics, , vol. 4(2), pages 127-150, December.
    17. Gu, Rongbao & Xiong, Wei & Li, Xinjie, 2015. "Does the singular value decomposition entropy have predictive power for stock market? — Evidence from the Shenzhen stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 439(C), pages 103-113.
    18. Paulo Ferreira, 2017. "Portuguese and Brazilian stock market integration: a non-linear and detrended approach," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 16(1), pages 49-63, April.
    19. Tilfani, Oussama & Kristoufek, Ladislav & Ferreira, Paulo & El Boukfaoui, My Youssef, 2022. "Heterogeneity in economic relationships: Scale dependence through the multivariate fractal regression," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    20. Ferreira, Paulo, 2018. "What detrended fluctuation analysis can tell us about NBA results," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 92-96.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ove:journl:aid:19622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francisco J. Delgado (email available below). General contact details of provider: https://edirc.repec.org/data/deovies.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.