IDEAS home Printed from https://ideas.repec.org/a/oup/revfin/v28y2024i1p1-44..html
   My bibliography  Save this article

Do Anomalies Really Predict Market Returns? New Data and New Evidence

Author

Listed:
  • Nusret Cakici
  • Christian Fieberg
  • Daniel Metko
  • Adam Zaremba

Abstract

Using new data from US and global markets, we revisit market risk premium predictability by equity anomalies. We apply a repertoire of machine-learning methods to forty-two countries to reach a simple conclusion: anomalies, as such, cannot predict aggregate market returns. Any ostensible evidence from the USA lacks external validity in two ways: it cannot be extended internationally and does not hold for alternative anomaly sets—regardless of the selection and design of factor strategies. The predictability—if any—originates from a handful of specific anomalies and depends heavily on seemingly minor methodological choices. Overall, our results challenge the view that anomalies as a group contain helpful information for forecasting market risk premia.

Suggested Citation

  • Nusret Cakici & Christian Fieberg & Daniel Metko & Adam Zaremba, 2024. "Do Anomalies Really Predict Market Returns? New Data and New Evidence," Review of Finance, European Finance Association, vol. 28(1), pages 1-44.
  • Handle: RePEc:oup:revfin:v:28:y:2024:i:1:p:1-44.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/rof/rfad025
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Fama, Eugene F. & French, Kenneth R., 2017. "International tests of a five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 123(3), pages 441-463.
    3. Leippold, Markus & Wang, Qian & Zhou, Wenyu, 2022. "Machine learning in the Chinese stock market," Journal of Financial Economics, Elsevier, vol. 145(2), pages 64-82.
    4. Xi Dong & Yan Li & David E. Rapach & Guofu Zhou, 2022. "Anomalies and the Expected Market Return," Journal of Finance, American Finance Association, vol. 77(1), pages 639-681, February.
    5. Erik Hjalmarsson & Tamás Kiss, 2021. "Dividend Growth Does Not Help Predict Returns Compared To Likelihood-Based Tests: An Anatomy of the Dog," Critical Finance Review, now publishers, vol. 10(3), pages 445-464, August.
    6. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    7. Fama, Eugene F. & French, Kenneth R., 2012. "Size, value, and momentum in international stock returns," Journal of Financial Economics, Elsevier, vol. 105(3), pages 457-472.
    8. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    9. David McLean, R. & Pontiff, Jeffrey & Watanabe, Akiko, 2009. "Share issuance and cross-sectional returns: International evidence," Journal of Financial Economics, Elsevier, vol. 94(1), pages 1-17, October.
    10. Andrew Y. Chen & Tom Zimmermann, 2022. "Open Source Cross-Sectional Asset Pricing," Critical Finance Review, now publishers, vol. 11(2), pages 207-264, May.
    11. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    12. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    13. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    14. Kewei Hou & Chen Xue & Lu Zhang, 2020. "Replicating Anomalies," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2019-2133.
    15. Ledoit, Oliver & Wolf, Michael, 2008. "Robust performance hypothesis testing with the Sharpe ratio," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 850-859, December.
    16. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2013. "International Stock Return Predictability: What Is the Role of the United States?," Journal of Finance, American Finance Association, vol. 68(4), pages 1633-1662, August.
    17. Kent Daniel & David Hirshleifer & Lin Sun, 2020. "Short- and Long-Horizon Behavioral Factors," The Review of Financial Studies, Society for Financial Studies, vol. 33(4), pages 1673-1736.
    18. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    19. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    20. Cakici, Nusret & Zaremba, Adam, 2022. "Salience theory and the cross-section of stock returns: International and further evidence," Journal of Financial Economics, Elsevier, vol. 146(2), pages 689-725.
    21. Fama, Eugene F., 1998. "Market efficiency, long-term returns, and behavioral finance," Journal of Financial Economics, Elsevier, vol. 49(3), pages 283-306, September.
    22. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    23. Juhani T Linnainmaa & Michael R Roberts, 2018. "The History of the Cross-Section of Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2606-2649.
    24. Jacobs, Heiko & Müller, Sebastian, 2020. "Anomalies across the globe: Once public, no longer existent?," Journal of Financial Economics, Elsevier, vol. 135(1), pages 213-230.
    25. Baltussen, Guido & Swinkels, Laurens & Van Vliet, Pim, 2021. "Global factor premiums," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1128-1154.
    26. Jeremiah Green & John R. M. Hand & X. Frank Zhang, 2017. "The Characteristics that Provide Independent Information about Average U.S. Monthly Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4389-4436.
    27. Kent Daniel & David Hirshleifer & Lin Sun, 2020. "Short- and Long-Horizon Behavioral Factors," Review of Finance, European Finance Association, vol. 33(4), pages 1673-1736.
    28. Kelly, Bryan & Pruitt, Seth, 2015. "The three-pass regression filter: A new approach to forecasting using many predictors," Journal of Econometrics, Elsevier, vol. 186(2), pages 294-316.
    29. Rapach, David E. & Wohar, Mark E. & Rangvid, Jesper, 2005. "Macro variables and international stock return predictability," International Journal of Forecasting, Elsevier, vol. 21(1), pages 137-166.
    30. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    31. Romano, Joseph P. & Wolf, Michael, 2016. "Efficient computation of adjusted p-values for resampling-based stepdown multiple testing," Statistics & Probability Letters, Elsevier, vol. 113(C), pages 38-40.
    32. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    33. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    34. Philip Gray & Thanh Huynh, 2021. "Treasury Rates No Longer Predict Returns: A Reappraisal of Breen, Glosten and Jagannathan (1989)," Critical Finance Review, now publishers, vol. 10(3), pages 429-444, August.
    35. Goyal, Amit & Wahal, Sunil, 2015. "Is Momentum an Echo?," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 50(6), pages 1237-1267, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cakici, Nusret & Shahzad, Syed Jawad Hussain & Będowska-Sójka, Barbara & Zaremba, Adam, 2024. "Machine learning and the cross-section of cryptocurrency returns," International Review of Financial Analysis, Elsevier, vol. 94(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cakici, Nusret & Fieberg, Christian & Metko, Daniel & Zaremba, Adam, 2023. "Machine learning goes global: Cross-sectional return predictability in international stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 155(C).
    2. Xi Dong & Yan Li & David E. Rapach & Guofu Zhou, 2022. "Anomalies and the Expected Market Return," Journal of Finance, American Finance Association, vol. 77(1), pages 639-681, February.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Long, Huaigang & Zaremba, Adam & Zhou, Wenyu & Bouri, Elie, 2022. "Macroeconomics matter: Leading economic indicators and the cross-section of global stock returns," Journal of Financial Markets, Elsevier, vol. 61(C).
    5. Cakici, Nusret & Shahzad, Syed Jawad Hussain & Będowska-Sójka, Barbara & Zaremba, Adam, 2024. "Machine learning and the cross-section of cryptocurrency returns," International Review of Financial Analysis, Elsevier, vol. 94(C).
    6. Iason Kynigakis & Ekaterini Panopoulou, 2022. "Does model complexity add value to asset allocation? Evidence from machine learning forecasting models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 603-639, April.
    7. Hollstein, Fabian, 2022. "The world of anomalies: Smaller than we think?," Journal of International Money and Finance, Elsevier, vol. 129(C).
    8. Niu, Zibo & Demirer, Riza & Suleman, Muhammad Tahir & Zhang, Hongwei & Zhu, Xuehong, 2024. "Do industries predict stock market volatility? Evidence from machine learning models," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 90(C).
    9. Vitor Azevedo & Georg Sebastian Kaiser & Sebastian Mueller, 2023. "Stock market anomalies and machine learning across the globe," Journal of Asset Management, Palgrave Macmillan, vol. 24(5), pages 419-441, September.
    10. Söhnke M. Bartram & Harald Lohre & Peter F. Pope & Ananthalakshmi Ranganathan, 2021. "Navigating the factor zoo around the world: an institutional investor perspective," Journal of Business Economics, Springer, vol. 91(5), pages 655-703, July.
    11. Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
    12. Hansen, Erwin, 2022. "Economic evaluation of asset pricing models under predictability," Journal of Empirical Finance, Elsevier, vol. 68(C), pages 50-66.
    13. Zhang, Yaojie & Wahab, M.I.M. & Wang, Yudong, 2023. "Forecasting crude oil market volatility using variable selection and common factor," International Journal of Forecasting, Elsevier, vol. 39(1), pages 486-502.
    14. Bui, Dien Giau & Kong, De-Rong & Lin, Chih-Yung & Lin, Tse-Chun, 2023. "Momentum in machine learning: Evidence from the Taiwan stock market," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
    15. Guo, Xu & Lin, Hai & Wu, Chunchi & Zhou, Guofu, 2022. "Predictive information in corporate bond yields," Journal of Financial Markets, Elsevier, vol. 59(PB).
    16. Zhang, Yaojie & Wang, Yudong, 2023. "Forecasting crude oil futures market returns: A principal component analysis combination approach," International Journal of Forecasting, Elsevier, vol. 39(2), pages 659-673.
    17. Fabian Hollstein & Marcel Prokopczuk, 2023. "Managing the Market Portfolio," Management Science, INFORMS, vol. 69(6), pages 3675-3696, June.
    18. Cakici, Nusret & Zaremba, Adam, 2022. "Salience theory and the cross-section of stock returns: International and further evidence," Journal of Financial Economics, Elsevier, vol. 146(2), pages 689-725.
    19. , & Stein, Tobias, 2021. "Equity premium predictability over the business cycle," CEPR Discussion Papers 16357, C.E.P.R. Discussion Papers.
    20. He, Mengxi & Zhang, Yaojie & Wen, Danyan & Wang, Yudong, 2021. "Forecasting crude oil prices: A scaled PCA approach," Energy Economics, Elsevier, vol. 97(C).

    More about this item

    Keywords

    Equity anomalies; Return predictability; Machine learning; International stock markets; Equity premium;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:revfin:v:28:y:2024:i:1:p:1-44.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/eufaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.