IDEAS home Printed from https://ideas.repec.org/a/oup/revfin/v21y2017i1p433-463..html
   My bibliography  Save this article

Intertemporal Forecasts of Defaulted Bond Recoveries and Portfolio Losses

Author

Listed:
  • Egon A. Kalotay
  • Edward I. Altman

Abstract

Variation in the composition of the defaulted debt pool and credit conditions at the time of default generate time variation in the distribution of recoveries on defaulted debt, and the related distribution of losses on portfolios of credit sensitive debt. We quantify the importance of accounting for such time variation in out-of-sample comparisons of alternative approaches to forecasting recoveries or losses given default (LGD) on defaulted bonds. Using simulations of losses on defaultable bond portfolios, we show that conditional mixture models improve forecasts of expected credit losses through capturing time variation in the recovery/LGD distribution. However, the best forecasts of instrument or firm-level recovery/LGD do not necessarily provide the best forecasts of portfolio-level losses, as the latter depend on the association between errors in the default and recovery/LGD forecasts. Our systematic comparisons of cross-sectional and intertemporal forecasting performance are enabled by a fast maximum-likelihood approach to estimating conditional mixtures of distributions.

Suggested Citation

  • Egon A. Kalotay & Edward I. Altman, 2017. "Intertemporal Forecasts of Defaulted Bond Recoveries and Portfolio Losses," Review of Finance, European Finance Association, vol. 21(1), pages 433-463.
  • Handle: RePEc:oup:revfin:v:21:y:2017:i:1:p:433-463.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/rof/rfw028
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2008. "In Search of Distress Risk," Journal of Finance, American Finance Association, vol. 63(6), pages 2899-2939, December.
    2. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    3. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    4. Jon Frye, 2000. "Depressing recoveries," Emerging Issues, Federal Reserve Bank of Chicago, issue Oct.
    5. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Hong & Forbes, Catherine S. & Fenech, Jean-Pierre & Vaz, John, 2020. "The determinants of bank loan recovery rates in good times and bad – New evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 177(C), pages 875-897.
    2. Salvatore D. Tomarchio & Antonio Punzo, 2019. "Modelling the loss given default distribution via a family of zero‐and‐one inflated mixture models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1247-1266, October.
    3. Hwang, Ruey-Ching & Chu, Chih-Kang & Yu, Kaizhi, 2020. "Predicting LGD distributions with mixed continuous and discrete ordinal outcomes," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1003-1022.
    4. Nazemi, Abdolreza & Baumann, Friedrich & Fabozzi, Frank J., 2022. "Intertemporal defaulted bond recoveries prediction via machine learning," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1162-1177.
    5. Bastos, João A. & Matos, Sara M., 2022. "Explainable models of credit losses," European Journal of Operational Research, Elsevier, vol. 301(1), pages 386-394.
    6. Kellner, Ralf & Nagl, Maximilian & Rösch, Daniel, 2022. "Opening the black box – Quantile neural networks for loss given default prediction," Journal of Banking & Finance, Elsevier, vol. 134(C).
    7. Nazemi, Abdolreza & Rezazadeh, Hani & Fabozzi, Frank J. & Höchstötter, Markus, 2022. "Deep learning for modeling the collection rate for third-party buyers," International Journal of Forecasting, Elsevier, vol. 38(1), pages 240-252.
    8. Hurlin, Christophe & Leymarie, Jérémy & Patin, Antoine, 2018. "Loss functions for Loss Given Default model comparison," European Journal of Operational Research, Elsevier, vol. 268(1), pages 348-360.
    9. Jennifer Betz & Maximilian Nagl & Daniel Rösch, 2022. "Credit line exposure at default modelling using Bayesian mixed effect quantile regression," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2035-2072, October.
    10. Ruey-Ching Hwang & Chih-Kang Chu & Kaizhi Yu, 2021. "Predicting the Loss Given Default Distribution with the Zero-Inflated Censored Beta-Mixture Regression that Allows Probability Masses and Bimodality," Journal of Financial Services Research, Springer;Western Finance Association, vol. 59(3), pages 143-172, June.
    11. Jennifer Betz & Ralf Kellner & Daniel Rösch, 2021. "Time matters: How default resolution times impact final loss rates," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 619-644, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    2. Pesaran, M. Hashem & Schuermann, Til & Treutler, Bjorn-Jakob & Weiner, Scott M., 2006. "Macroeconomic Dynamics and Credit Risk: A Global Perspective," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1211-1261, August.
    3. Zhang, Wei, 2015. "R&D investment and distress risk," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 94-114.
    4. Maria H. Kim & Graham Partington, 2015. "Dynamic forecasts of financial distress of Australian firms," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 135-160, February.
    5. Sara Kelly Anzinger & Chinmoy Ghosh & Milena Petrova, 2017. "The Other Side of Value: The Effect of Quality on Price and Return in Real Estate," The Journal of Real Estate Finance and Economics, Springer, vol. 54(3), pages 429-457, April.
    6. Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
    7. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    8. Ruey-Ching Hwang & Huimin Chung & Jiun-Yi Ku, 2013. "Predicting Recurrent Financial Distresses with Autocorrelation Structure: An Empirical Analysis from an Emerging Market," Journal of Financial Services Research, Springer;Western Finance Association, vol. 43(3), pages 321-341, June.
    9. Filipe, Sara Ferreira & Grammatikos, Theoharry & Michala, Dimitra, 2016. "Forecasting distress in European SME portfolios," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 112-135.
    10. Hamid Waqas & Rohani Md-Rus, 2018. "Predicting financial distress: Applicability of O-score model for Pakistani firms," Business and Economic Horizons (BEH), Prague Development Center, vol. 14(2), pages 389-401, April.
    11. Giesecke, Kay & Longstaff, Francis A. & Schaefer, Stephen & Strebulaev, Ilya, 2011. "Corporate bond default risk: A 150-year perspective," Journal of Financial Economics, Elsevier, vol. 102(2), pages 233-250.
    12. Ye, Qing & Wu, Yuliang & Liu, Jia, 2019. "Institutional preferences, demand shocks and the distress anomaly," The British Accounting Review, Elsevier, vol. 51(1), pages 72-91.
    13. Ferreira Filipe, Sara & Grammatikos, Theoharry & Michala, Dimitra, 2016. "Pricing default risk: The good, the bad, and the anomaly," Journal of Financial Stability, Elsevier, vol. 26(C), pages 190-213.
    14. Jane Haider & Zhirong Ou & Stephen Pettit, 2019. "Predicting corporate failure for listed shipping companies," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 21(3), pages 415-438, September.
    15. Asis, Gonzalo & Chari, Anusha & Haas, Adam, 2021. "In search of distress risk in emerging markets," Journal of International Economics, Elsevier, vol. 131(C).
    16. Balios, Dimitris & Thomadakis, Stavros & Tsipouri, Lena, 2016. "Credit rating model development: An ordered analysis based on accounting data," Research in International Business and Finance, Elsevier, vol. 38(C), pages 122-136.
    17. Lyandres, Evgeny & Zhdanov, Alexei, 2013. "Investment opportunities and bankruptcy prediction," Journal of Financial Markets, Elsevier, vol. 16(3), pages 439-476.
    18. Alexander Hölzl & Sebastian Lobe, 2016. "Predicting above-median and below-median growth rates," Review of Managerial Science, Springer, vol. 10(1), pages 105-133, January.
    19. Tao, Qizhi & Chen, Carl & Lu, Rui & Zhang, Ting, 2017. "Underfunding or distress? An analysis of corporate pension underfunding and the cross-section of expected stock returns," International Review of Economics & Finance, Elsevier, vol. 48(C), pages 116-133.
    20. Sigrist, Fabio & Leuenberger, Nicola, 2023. "Machine learning for corporate default risk: Multi-period prediction, frailty correlation, loan portfolios, and tail probabilities," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1390-1406.

    More about this item

    Keywords

    Recovery; Loss given default; Credit Risk; Mixture Model; Loss Forecasting;
    All these keywords.

    JEL classification:

    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:revfin:v:21:y:2017:i:1:p:433-463.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/eufaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.