Intertemporal Forecasts of Defaulted Bond Recoveries and Portfolio Losses
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2008.
"In Search of Distress Risk,"
Journal of Finance, American Finance Association, vol. 63(6), pages 2899-2939, December.
- Campbell, John Y. & Hilscher, Jens & Szilagyi, Jan, 2005. "In search of distress risk," Discussion Paper Series 1: Economic Studies 2005,27, Deutsche Bundesbank.
- John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2005. "In Searach of Distress Risk," Harvard Institute of Economic Research Working Papers 2081, Harvard - Institute of Economic Research.
- Szilagyi, Jan & Hilscher, Jens & Campbell, John, 2008. "In Search of Distress Risk," Scholarly Articles 3199070, Harvard University Department of Economics.
- John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2006. "In Search of Distress Risk," NBER Working Papers 12362, National Bureau of Economic Research, Inc.
- Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
- Train,Kenneth E., 2009.
"Discrete Choice Methods with Simulation,"
Cambridge Books,
Cambridge University Press, number 9780521766555, September.
- Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, October.
- Kenneth Train, 2003. "Discrete Choice Methods with Simulation," Online economics textbooks, SUNY-Oswego, Department of Economics, number emetr2.
- Jon Frye, 2000. "Depressing recoveries," Emerging Issues, Federal Reserve Bank of Chicago, issue Oct.
- Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Hong & Forbes, Catherine S. & Fenech, Jean-Pierre & Vaz, John, 2020.
"The determinants of bank loan recovery rates in good times and bad – New evidence,"
Journal of Economic Behavior & Organization, Elsevier, vol. 177(C), pages 875-897.
- Hong Wang & Catherine S. Forbes & Jean-Pierre Fenech & John Vaz, 2018. "The determinants of bank loan recovery rates in good times and bad -- new evidence," Monash Econometrics and Business Statistics Working Papers 7/18, Monash University, Department of Econometrics and Business Statistics.
- Hong Wang & Catherine S. Forbes & Jean-Pierre Fenech & John Vaz, 2018. "The determinants of bank loan recovery rates in good times and bad - new evidence," Papers 1804.07022, arXiv.org.
- Salvatore D. Tomarchio & Antonio Punzo, 2019. "Modelling the loss given default distribution via a family of zero‐and‐one inflated mixture models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1247-1266, October.
- Hwang, Ruey-Ching & Chu, Chih-Kang & Yu, Kaizhi, 2020. "Predicting LGD distributions with mixed continuous and discrete ordinal outcomes," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1003-1022.
- Nazemi, Abdolreza & Baumann, Friedrich & Fabozzi, Frank J., 2022. "Intertemporal defaulted bond recoveries prediction via machine learning," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1162-1177.
- Bastos, João A. & Matos, Sara M., 2022.
"Explainable models of credit losses,"
European Journal of Operational Research, Elsevier, vol. 301(1), pages 386-394.
- João A. Bastos & Sara M. Matos, 2021. "Explainable models of credit losses," Working Papers REM 2021/0161, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
- Kellner, Ralf & Nagl, Maximilian & Rösch, Daniel, 2022. "Opening the black box – Quantile neural networks for loss given default prediction," Journal of Banking & Finance, Elsevier, vol. 134(C).
- Nazemi, Abdolreza & Rezazadeh, Hani & Fabozzi, Frank J. & Höchstötter, Markus, 2022. "Deep learning for modeling the collection rate for third-party buyers," International Journal of Forecasting, Elsevier, vol. 38(1), pages 240-252.
- Hurlin, Christophe & Leymarie, Jérémy & Patin, Antoine, 2018. "Loss functions for Loss Given Default model comparison," European Journal of Operational Research, Elsevier, vol. 268(1), pages 348-360.
- Jennifer Betz & Maximilian Nagl & Daniel Rösch, 2022. "Credit line exposure at default modelling using Bayesian mixed effect quantile regression," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2035-2072, October.
- Ruey-Ching Hwang & Chih-Kang Chu & Kaizhi Yu, 2021. "Predicting the Loss Given Default Distribution with the Zero-Inflated Censored Beta-Mixture Regression that Allows Probability Masses and Bimodality," Journal of Financial Services Research, Springer;Western Finance Association, vol. 59(3), pages 143-172, June.
- Jennifer Betz & Ralf Kellner & Daniel Rösch, 2021. "Time matters: How default resolution times impact final loss rates," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 619-644, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
- Pesaran, M. Hashem & Schuermann, Til & Treutler, Bjorn-Jakob & Weiner, Scott M., 2006.
"Macroeconomic Dynamics and Credit Risk: A Global Perspective,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1211-1261, August.
- M. Hashem Pesaran & Til Schuermann & Björn-Jakob Treutler & Scott M. Weiner & April, "undated". "Macroeconomic Dynamics and Credit Risk: A Global Perspective," Center for Financial Institutions Working Papers 03-13, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Til Schuermann & Björn-Jakob Treutler & Scott M. Weiner & M. Hashem Pesaran, 2003. "Macroeconomic Dynamics and Credit Risk: A Global Perspective," CESifo Working Paper Series 995, CESifo.
- Pesaran, M.H. & Schuermann, T. & Treutler, B-J. & Weiner, S.M., 2003. "Macroeconomic Dynamics and Credit Risk: A Global Perspective," Cambridge Working Papers in Economics 0330, Faculty of Economics, University of Cambridge.
- Zhang, Wei, 2015. "R&D investment and distress risk," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 94-114.
- Maria H. Kim & Graham Partington, 2015. "Dynamic forecasts of financial distress of Australian firms," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 135-160, February.
- Sara Kelly Anzinger & Chinmoy Ghosh & Milena Petrova, 2017. "The Other Side of Value: The Effect of Quality on Price and Return in Real Estate," The Journal of Real Estate Finance and Economics, Springer, vol. 54(3), pages 429-457, April.
- Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
- Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
- Ruey-Ching Hwang & Huimin Chung & Jiun-Yi Ku, 2013. "Predicting Recurrent Financial Distresses with Autocorrelation Structure: An Empirical Analysis from an Emerging Market," Journal of Financial Services Research, Springer;Western Finance Association, vol. 43(3), pages 321-341, June.
- Filipe, Sara Ferreira & Grammatikos, Theoharry & Michala, Dimitra, 2016.
"Forecasting distress in European SME portfolios,"
Journal of Banking & Finance, Elsevier, vol. 64(C), pages 112-135.
- Michala, Dimitra & Grammatikos, Theoharry & Ferreira Filipe, Sara, 2013. "Forecasting distress in European SME portfolios," EIF Working Paper Series 2013/17, European Investment Fund (EIF).
- Ferreira Filipe, Sara & Grammatikos, Theoharry & Michala, Dimitra, 2014. "Forecasting Distress in European SME Portfolios," MPRA Paper 53572, University Library of Munich, Germany.
- Hamid Waqas & Rohani Md-Rus, 2018. "Predicting financial distress: Applicability of O-score model for Pakistani firms," Business and Economic Horizons (BEH), Prague Development Center, vol. 14(2), pages 389-401, April.
- Giesecke, Kay & Longstaff, Francis A. & Schaefer, Stephen & Strebulaev, Ilya, 2011. "Corporate bond default risk: A 150-year perspective," Journal of Financial Economics, Elsevier, vol. 102(2), pages 233-250.
- Ye, Qing & Wu, Yuliang & Liu, Jia, 2019. "Institutional preferences, demand shocks and the distress anomaly," The British Accounting Review, Elsevier, vol. 51(1), pages 72-91.
- Ferreira Filipe, Sara & Grammatikos, Theoharry & Michala, Dimitra, 2016.
"Pricing default risk: The good, the bad, and the anomaly,"
Journal of Financial Stability, Elsevier, vol. 26(C), pages 190-213.
- Ferreira Filipe, Sara & Grammatikos, Theoharry & Michala, Dimitra, 2014. "Pricing Default Risk: The good, the bad, and the anomaly," EIF Working Paper Series 2014/23, European Investment Fund (EIF).
- Ferreira Filipe, Sara & Grammatikos, Theoharry & Michala, Dimitra, 2014. "Pricing Default Risk: The Good, The Bad, and The Anomaly," MPRA Paper 53373, University Library of Munich, Germany.
- Jane Haider & Zhirong Ou & Stephen Pettit, 2019. "Predicting corporate failure for listed shipping companies," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 21(3), pages 415-438, September.
- Asis, Gonzalo & Chari, Anusha & Haas, Adam, 2021.
"In search of distress risk in emerging markets,"
Journal of International Economics, Elsevier, vol. 131(C).
- Gonzalo Asis & Anusha Chari & Adam Haas, 2020. "In Search of Distress Risk in Emerging Markets," NBER Working Papers 27213, National Bureau of Economic Research, Inc.
- Balios, Dimitris & Thomadakis, Stavros & Tsipouri, Lena, 2016. "Credit rating model development: An ordered analysis based on accounting data," Research in International Business and Finance, Elsevier, vol. 38(C), pages 122-136.
- Lyandres, Evgeny & Zhdanov, Alexei, 2013. "Investment opportunities and bankruptcy prediction," Journal of Financial Markets, Elsevier, vol. 16(3), pages 439-476.
- Alexander Hölzl & Sebastian Lobe, 2016. "Predicting above-median and below-median growth rates," Review of Managerial Science, Springer, vol. 10(1), pages 105-133, January.
- Tao, Qizhi & Chen, Carl & Lu, Rui & Zhang, Ting, 2017. "Underfunding or distress? An analysis of corporate pension underfunding and the cross-section of expected stock returns," International Review of Economics & Finance, Elsevier, vol. 48(C), pages 116-133.
- Sigrist, Fabio & Leuenberger, Nicola, 2023. "Machine learning for corporate default risk: Multi-period prediction, frailty correlation, loan portfolios, and tail probabilities," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1390-1406.
More about this item
Keywords
Recovery; Loss given default; Credit Risk; Mixture Model; Loss Forecasting;All these keywords.
JEL classification:
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
- G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
- G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:revfin:v:21:y:2017:i:1:p:433-463.. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/eufaaea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.