IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v14y2016i3p496-524..html
   My bibliography  Save this article

Efficient Portfolio Selection in a Large Market

Author

Listed:
  • Jiaqin Chen
  • Ming Yuan

Abstract

Recent empirical studies show that the estimated Markowitz mean–variance portfolios oftentimes perform rather poorly when there are more than several assets in the investment universe. In this article, we argue that such disappointing performance can be largely attributed to the estimation error incurred in sample mean–variance portfolios, and therefore could be improved by utilizing more efficient estimating strategies. In particular, we show that this "Markowitz optimization enigma" (Michaud, 1989) could be resolved by carefully balancing the tradeoff between the estimation error and systematic error through the so-called subspace mean–variance analysis. In addition to the consistent improvement observed on real and simulated data sets, we prove that, under an approximate factor model, it is possible to use this strategy to construct portfolio rules whose performance closely resemble that of theoretical mean–variance efficient portfolios in a large market.

Suggested Citation

  • Jiaqin Chen & Ming Yuan, 2016. "Efficient Portfolio Selection in a Large Market," Journal of Financial Econometrics, Oxford University Press, vol. 14(3), pages 496-524.
  • Handle: RePEc:oup:jfinec:v:14:y:2016:i:3:p:496-524.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/jjfinec/nbw003
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(6), pages 1113-1141, December.
    2. Gregory Connor & Lisa R. Goldberg & Robert A. Korajczyk, 2010. "Portfolio Risk Analysis," Economics Books, Princeton University Press, edition 1, number 9224.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lassance, Nathan, 2022. "Reconciling mean-variance portfolio theory with non-Gaussian returns," European Journal of Operational Research, Elsevier, vol. 297(2), pages 729-740.
    2. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    3. N'Golo Kone, 2020. "A Multi-Period Portfolio Selection in a Large Financial Market," Working Paper 1439, Economics Department, Queen's University.
    4. N'Golo Kone, 2021. "Regularized Maximum Diversification Investment Strategy," Working Paper 1450, Economics Department, Queen's University.
    5. Stephen Boyd & Kasper Johansson & Ronald Kahn & Philipp Schiele & Thomas Schmelzer, 2024. "Markowitz Portfolio Construction at Seventy," Papers 2401.05080, arXiv.org.
    6. Lassance, Nathan & Vrins, Frédéric, 2021. "Portfolio selection with parsimonious higher comoments estimation," Journal of Banking & Finance, Elsevier, vol. 126(C).
    7. Petukhina, Alla & Klochkov, Yegor & Härdle, Wolfgang Karl & Zhivotovskiy, Nikita, 2024. "Robustifying Markowitz," Journal of Econometrics, Elsevier, vol. 239(2).
    8. Nisful Laila & Karina Ayu Saraswati & Himmatul Kholidah, 2019. "Efficient portfolio composition of Indonesian Islamic bank financing," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 7(1), pages 34-43, September.
    9. Elisabeth Leoff & Leonie Ruderer & Jörn Sass, 2022. "Signal-to-noise matrix and model reduction in continuous-time hidden Markov models," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(2), pages 327-359, April.
    10. N'Golo Kone, 2021. "Efficient mean-variance portfolio selection by double regularization," Working Paper 1453, Economics Department, Queen's University.
    11. Härdle, Wolfgang & Klochkov, Yegor & Petukhina, Alla & Zhivotovskiy, Nikita, 2021. "Robustifying Markowitz," IRTG 1792 Discussion Papers 2021-018, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    12. N’Golo Koné, 2020. "Regularized Maximum Diversification Investment Strategy," Econometrics, MDPI, vol. 9(1), pages 1-23, December.
    13. Han, Chulwoo, 2020. "A nonparametric approach to portfolio shrinkage," Journal of Banking & Finance, Elsevier, vol. 120(C).
    14. Mohammad Mehdi Hosseinzadeh & Sergio Ortobelli Lozza & Farhad Hosseinzadeh Lotfi & Vittorio Moriggia, 2023. "Portfolio optimization with asset preselection using data envelopment analysis," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(1), pages 287-310, March.
    15. Branger, Nicole & Lučivjanská, Katarína & Weissensteiner, Alex, 2019. "Optimal granularity for portfolio choice," Journal of Empirical Finance, Elsevier, vol. 50(C), pages 125-146.
    16. Wolfgang Karl Hardle & Yegor Klochkov & Alla Petukhina & Nikita Zhivotovskiy, 2022. "Robustifying Markowitz," Papers 2212.13996, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriele Fiorentini & Enrique Sentana, 2019. "Dynamic specification tests for dynamic factor models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 325-346, April.
    2. Guerard, John, 2023. "Harry Markowitz: An appreciation," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1496-1501.
    3. Lippi, Marco & Reichlin, Lucrezia & Hallin, Marc & Forni, Mario & Altissimo, Filippo & Cristadoro, Riccardo & Veronese, Giovanni & Bassanetti, Antonio, 2001. "EuroCOIN: A Real Time Coincident Indicator of the Euro Area Business Cycle," CEPR Discussion Papers 3108, C.E.P.R. Discussion Papers.
    4. Cem Ertur & Antonio Musolesi, 2017. "Weak and Strong Cross‐Sectional Dependence: A Panel Data Analysis of International Technology Diffusion," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 477-503, April.
    5. Tomohiro Ando & Ruey S. Tsay, 2009. "Model selection for generalized linear models with factor‐augmented predictors," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 207-235, May.
    6. Michał Brzoza-Brzezina & Jacek Kotłowski, 2009. "Bezwzględna stopa inflacji w gospodarce polskiej," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 9, pages 1-21.
    7. Ard H.J. den Reijer, 2005. "Forecasting Dutch GDP using Large Scale Factor Models," DNB Working Papers 028, Netherlands Central Bank, Research Department.
    8. Matteo Barigozzi & Antonio M. Conti & Matteo Luciani, 2014. "Do Euro Area Countries Respond Asymmetrically to the Common Monetary Policy?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(5), pages 693-714, October.
    9. Uniejewski, Bartosz & Maciejowska, Katarzyna, 2023. "LASSO principal component averaging: A fully automated approach for point forecast pooling," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1839-1852.
    10. Jean Boivin & Marc P. Giannoni, 2006. "Has Monetary Policy Become More Effective?," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 445-462, August.
    11. Mario Forni & Luca Gambetti & Luca Sala, 2014. "No News in Business Cycles," Economic Journal, Royal Economic Society, vol. 124(581), pages 1168-1191, December.
    12. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821, arXiv.org, revised Sep 2024.
    13. Das, Samarjit & Bhattacharya, Kaushik, 2004. "Price Convergence across Regions in India," Bonn Econ Discussion Papers 1/2005, University of Bonn, Bonn Graduate School of Economics (BGSE).
    14. Cipollini, A. & Kapetanios, G., 2009. "Forecasting financial crises and contagion in Asia using dynamic factor analysis," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 188-200, March.
    15. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    16. Massacci, Daniele, 2017. "Least squares estimation of large dimensional threshold factor models," Journal of Econometrics, Elsevier, vol. 197(1), pages 101-129.
    17. Pellényi, Gábor, 2012. "A monetáris politika hatása a magyar gazdaságra. Elemzés strukturális, dinamikus faktormodellel [The sectoral effects of monetary policy in Hungary: a structural factor]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(3), pages 263-284.
    18. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.
    19. Alexander Chudik & Roland Straub, 2017. "Size, Openness, And Macroeconomic Interdependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58(1), pages 33-55, February.
    20. Jushan Bai & Serena Ng, 2020. "Simpler Proofs for Approximate Factor Models of Large Dimensions," Papers 2008.00254, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:14:y:2016:i:3:p:496-524.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sofieea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.