IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v18y2023ip609-621..html
   My bibliography  Save this article

Asymmetric time-varying dependence and variable structure dependence measurement and analysis of EUA and CER

Author

Listed:
  • Xing Yang
  • Yi-ting Ye
  • Jia-wen Li
  • Jun-long Mi

Abstract

This paper analyzed the time-varying dependence and structural dependence between EU allowances (EUAs) and certified emission reductions (CERs) by using price fluctuation data from 2008 to 2021 on EU ETS. It was found that (1) there was a strong nonlinear spillover relationship between EUAs and CERs. From 14 March 2008 to 16 March 2012, the time-varying dependence values of EUAs and CERs were mostly between 0.6 and 1 and the mean coefficient of dependence was 0.86, showing a strong interdependence. From 17 March 2012 to 2 January 2017, the correlation between them was mostly below 0.6 and the mean coefficient of dependence fell to 0.25. This indicates that the dependency between EUA futures and CER futures was very low at this stage. However, in general, the mean value of dependence was above 0.55, that is, there was a dependency between them. (2) From 14 March 2008 to 2 January 2017, there were 12 structural mutation points in EUA and CER yield sequences. After four mutation points, the dependence coefficient increased and the structural dependence enhanced. Meanwhile, after eight mutation points, the dependence coefficient decreased and the structural dependence weakened. The overall level remained above 0.6, showing the existence of structural dependence. (3) Abrupt changes in EUA and CER prices were closely related to the promulgation of major policies and unpredictable emergencies. The former caused carbon prices to fluctuate slightly. When the period of change was short and the recovery was rapid, it caused sharp fluctuations in carbon prices. When the duration of change was long, and the recovery was slow, it yielded impacts that extend far beyond the publication of important information.

Suggested Citation

  • Xing Yang & Yi-ting Ye & Jia-wen Li & Jun-long Mi, 2023. "Asymmetric time-varying dependence and variable structure dependence measurement and analysis of EUA and CER," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 609-621.
  • Handle: RePEc:oup:ijlctc:v:18:y:2023:i::p:609-621.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/ctad036
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jing Zhang & Dominique Guegan, 2008. "Pricing bivariate option under GARCH processes with time-varying copula," PSE-Ecole d'économie de Paris (Postprint) halshs-00286054, HAL.
    2. Koop, Gary & Tole, Lise, 2013. "Modeling the relationship between European carbon permits and certified emission reductions," Journal of Empirical Finance, Elsevier, vol. 24(C), pages 166-181.
    3. Jing Zhang & Dominique Guegan, 2008. "Pricing bivariate option under GARCH processes with time-varying copula," Post-Print halshs-00259242, HAL.
    4. Jing Zhang & Dominique Guegan, 2008. "Pricing bivariate option under GARCH processes with time-varying copula," Post-Print halshs-00286054, HAL.
    5. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    6. Zhang, J. & Guégan, D., 2008. "Pricing bivariate option under GARCH processes with time-varying copula," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1095-1103, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emmanuel Afuecheta & Saralees Nadarajah & Stephen Chan, 2021. "A Statistical Analysis of Global Economies Using Time Varying Copulas," Computational Economics, Springer;Society for Computational Economics, vol. 58(4), pages 1167-1194, December.
    2. Rombouts, Jeroen & Stentoft, Lars & Violante, Franceso, 2014. "The value of multivariate model sophistication: An application to pricing Dow Jones Industrial Average options," International Journal of Forecasting, Elsevier, vol. 30(1), pages 78-98.
    3. Branger, Nicole & Muck, Matthias, 2012. "Keep on smiling? The pricing of Quanto options when all covariances are stochastic," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1577-1591.
    4. Thijs Markwat, 2014. "The rise of global stock market crash probabilities," Quantitative Finance, Taylor & Francis Journals, vol. 14(4), pages 557-571, April.
    5. Rombouts, Jeroen V.K. & Stentoft, Lars, 2011. "Multivariate option pricing with time varying volatility and correlations," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2267-2281, September.
    6. Stavrakoudis, Athanassios & Panagiotou, Dimitrios, 2016. "Price dependence between coffee qualities: a copula model to evaluate asymmetric responses," MPRA Paper 75994, University Library of Munich, Germany.
    7. Aloui, Riadh & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2013. "A time-varying copula approach to oil and stock market dependence: The case of transition economies," Energy Economics, Elsevier, vol. 39(C), pages 208-221.
    8. BenSaïda, Ahmed & Slim, Skander, 2016. "Highly flexible distributions to fit multiple frequency financial returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 203-213.
    9. Govindan, Rajesh & Al-Ansari, Tareq, 2019. "Computational decision framework for enhancing resilience of the energy, water and food nexus in risky environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 653-668.
    10. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    11. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    12. Charles, Amélie, 2010. "The day-of-the-week effects on the volatility: The role of the asymmetry," European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
    13. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    14. Changli He & Annastiina Silvennoinen & Timo Teräsvirta, 2008. "Parameterizing Unconditional Skewness in Models for Financial Time Series," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 208-230, Spring.
    15. Javier Ojea Ferreiro, 2018. "Contagion spillovers between sovereign and financial European sector from a Delta CoVaR approach," Documentos de Trabajo del ICAE 2018-12, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    16. Gloria Gonzalez‐Rivera & Yun Luo & Esther Ruiz, 2020. "Prediction regions for interval‐valued time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 373-390, June.
    17. Xun Lu & Kin Lai & Liang Liang, 2014. "Portfolio value-at-risk estimation in energy futures markets with time-varying copula-GARCH model," Annals of Operations Research, Springer, vol. 219(1), pages 333-357, August.
    18. González-Rivera, Gloria & Yoldas, Emre, 2012. "Autocontour-based evaluation of multivariate predictive densities," International Journal of Forecasting, Elsevier, vol. 28(2), pages 328-342.
    19. Bassetti, Federico & De Giuli, Maria Elena & Nicolino, Enrica & Tarantola, Claudia, 2018. "Multivariate dependence analysis via tree copula models: An application to one-year forward energy contracts," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1107-1121.
    20. Rehman, Mobeen Ur, 2020. "Do bitcoin and precious metals do any good together? An extreme dependence and risk spillover analysis," Resources Policy, Elsevier, vol. 68(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:18:y:2023:i::p:609-621.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.