IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i11p7483-7498d42452.html
   My bibliography  Save this article

CFD Study on Aerodynamic Power Output Changes with Inter-Turbine Spacing Variation for a 6 MW Offshore Wind Farm

Author

Listed:
  • Nak Joon Choi

    (School of Mechanical Engineering, Pusan National University, San 30, Jangjeon-dong, Geumjeong-Gu, Busan 609-735, Korea)

  • Sang Hyun Nam

    (DNDE Inc., Busan 612-020, Korea)

  • Jong Hyun Jeong

    (DNDE Inc., Busan 612-020, Korea)

  • Kyung Chun Kim

    (School of Mechanical Engineering, Pusan National University, San 30, Jangjeon-dong, Geumjeong-Gu, Busan 609-735, Korea)

Abstract

This study examined the aerodynamic power output change of wind turbines with inter-turbine spacing variation for a 6 MW wind farm composed of three sets of 2 MW wind turbines using computational fluid dynamics (CFD). The wind farm layout design is becoming increasingly important as the use of wind energy is steadily increasing. Among the many wind farm layout design parameters, the inter-turbine spacing is a key factor in the initial investment cost, annual energy production and maintenance cost. The inter-turbine spacing should be determined to maximize the annual energy production and minimize the wake effect, turbulence effect and fatigue load during the service lifetime of wind turbines. Therefore, some compromise between the aerodynamic power output of wind turbines and the inter-turbine spacing is needed. An actuator disc model with the addition of a momentum source was not used, and instead, a full 3-dimensional model with a tower and nacelle was used for CFD analysis because of its great technical significance. The CFD analysis results, such as the aerodynamic power output, axial direction wind speed change, pressure drop across the rotor of wind turbine, and wind speed deficit due to the wake effect with inter-turbine spacing variation, were studied. The results of this study can be applied effectively to wind farm layout design and evaluation.

Suggested Citation

  • Nak Joon Choi & Sang Hyun Nam & Jong Hyun Jeong & Kyung Chun Kim, 2014. "CFD Study on Aerodynamic Power Output Changes with Inter-Turbine Spacing Variation for a 6 MW Offshore Wind Farm," Energies, MDPI, vol. 7(11), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:11:p:7483-7498:d:42452
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/11/7483/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/11/7483/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. González, Javier Serrano & Gonzalez Rodriguez, Angel G. & Mora, José Castro & Santos, Jesús Riquelme & Payan, Manuel Burgos, 2010. "Optimization of wind farm turbines layout using an evolutive algorithm," Renewable Energy, Elsevier, vol. 35(8), pages 1671-1681.
    2. Kishinami, Koki & Taniguchi, Hiroshi & Suzuki, Jun & Ibano, Hiroshi & Kazunou, Takashi & Turuhami, Masato, 2005. "Theoretical and experimental study on the aerodynamic characteristics of a horizontal axis wind turbine," Energy, Elsevier, vol. 30(11), pages 2089-2100.
    3. Kusiak, Andrew & Song, Zhe, 2010. "Design of wind farm layout for maximum wind energy capture," Renewable Energy, Elsevier, vol. 35(3), pages 685-694.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dowon Han & Young Gun Heo & Nak Joon Choi & Sang Hyun Nam & Kyoung Ho Choi & Kyung Chun Kim, 2018. "Design, Fabrication, and Performance Test of a 100-W Helical-Blade Vertical-Axis Wind Turbine at Low Tip-Speed Ratio," Energies, MDPI, vol. 11(6), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mittal, Prateek & Kulkarni, Kedar & Mitra, Kishalay, 2016. "A novel hybrid optimization methodology to optimize the total number and placement of wind turbines," Renewable Energy, Elsevier, vol. 86(C), pages 133-147.
    2. Souma Chowdhury & Ali Mehmani & Jie Zhang & Achille Messac, 2016. "Market Suitability and Performance Tradeoffs Offered by Commercial Wind Turbines across Differing Wind Regimes," Energies, MDPI, vol. 9(5), pages 1-31, May.
    3. Guirguis, David & Romero, David A. & Amon, Cristina H., 2017. "Gradient-based multidisciplinary design of wind farms with continuous-variable formulations," Applied Energy, Elsevier, vol. 197(C), pages 279-291.
    4. Park, Jinkyoo & Law, Kincho H., 2015. "Layout optimization for maximizing wind farm power production using sequential convex programming," Applied Energy, Elsevier, vol. 151(C), pages 320-334.
    5. Houssem R. E. H. Bouchekara & Yusuf A. Sha’aban & Mohammad S. Shahriar & Makbul A. M. Ramli & Abdullahi A. Mas’ud, 2023. "Wind Farm Layout Optimization/Expansion with Real Wind Turbines Using a Multi-Objective EA Based on an Enhanced Inverted Generational Distance Metric Combined with the Two-Archive Algorithm 2," Sustainability, MDPI, vol. 15(3), pages 1-32, January.
    6. Eroğlu, Yunus & Seçkiner, Serap Ulusam, 2012. "Design of wind farm layout using ant colony algorithm," Renewable Energy, Elsevier, vol. 44(C), pages 53-62.
    7. Eroğlu, Yunus & Seçkiner, Serap Ulusam, 2013. "Wind farm layout optimization using particle filtering approach," Renewable Energy, Elsevier, vol. 58(C), pages 95-107.
    8. Yamani Douzi Sorkhabi, Sami & Romero, David A. & Beck, J. Christopher & Amon, Cristina H., 2018. "Constrained multi-objective wind farm layout optimization: Novel constraint handling approach based on constraint programming," Renewable Energy, Elsevier, vol. 126(C), pages 341-353.
    9. McInerney, Celine & Bunn, Derek W., 2017. "Optimal over installation of wind generation facilities," Energy Economics, Elsevier, vol. 61(C), pages 87-96.
    10. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Investigation into the optimal wind turbine layout patterns for a Hong Kong offshore wind farm," Energy, Elsevier, vol. 73(C), pages 430-442.
    11. Lam, H.F. & Peng, H.Y., 2017. "Measurements of the wake characteristics of co- and counter-rotating twin H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 131(C), pages 13-26.
    12. Serrano González, Javier & Burgos Payán, Manuel & Santos, Jesús Manuel Riquelme & González-Longatt, Francisco, 2014. "A review and recent developments in the optimal wind-turbine micro-siting problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 133-144.
    13. Saavedra-Moreno, B. & Salcedo-Sanz, S. & Paniagua-Tineo, A. & Prieto, L. & Portilla-Figueras, A., 2011. "Seeding evolutionary algorithms with heuristics for optimal wind turbines positioning in wind farms," Renewable Energy, Elsevier, vol. 36(11), pages 2838-2844.
    14. Chen, K. & Song, M.X. & Zhang, X. & Wang, S.F., 2016. "Wind turbine layout optimization with multiple hub height wind turbines using greedy algorithm," Renewable Energy, Elsevier, vol. 96(PA), pages 676-686.
    15. Aguayo, Maichel M. & Fierro, Pablo E. & De la Fuente, Rodrigo A. & Sepúlveda, Ignacio A. & Figueroa, Dante M., 2021. "A mixed-integer programming methodology to design tidal current farms integrating both cost and benefits: A case study in the Chacao Channel, Chile," Applied Energy, Elsevier, vol. 294(C).
    16. Behnam Moghadassian & Aaron Rosenberg & Anupam Sharma, 2016. "Numerical Investigation of Aerodynamic Performance and Loads of a Novel Dual Rotor Wind Turbine," Energies, MDPI, vol. 9(7), pages 1-30, July.
    17. Jim Kuo & Kevin Pan & Ni Li & He Shen, 2020. "Wind Farm Yaw Optimization via Random Search Algorithm," Energies, MDPI, vol. 13(4), pages 1-15, February.
    18. Lo Brutto, Ottavio A. & Thiébot, Jérôme & Guillou, Sylvain S. & Gualous, Hamid, 2016. "A semi-analytic method to optimize tidal farm layouts – Application to the Alderney Race (Raz Blanchard), France," Applied Energy, Elsevier, vol. 183(C), pages 1168-1180.
    19. Lee, Jaejoon & Son, Eunkuk & Hwang, Byungho & Lee, Soogab, 2013. "Blade pitch angle control for aerodynamic performance optimization of a wind farm," Renewable Energy, Elsevier, vol. 54(C), pages 124-130.
    20. Wan, Chunqiu & Wang, Jun & Yang, Geng & Gu, Huajie & Zhang, Xing, 2012. "Wind farm micro-siting by Gaussian particle swarm optimization with local search strategy," Renewable Energy, Elsevier, vol. 48(C), pages 276-286.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:11:p:7483-7498:d:42452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.