IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v63y2007i3p663-672.html
   My bibliography  Save this article

Marginal Analysis of Correlated Failure Time Data with Informative Cluster Sizes

Author

Listed:
  • Xiuyu J. Cong
  • Guosheng Yin
  • Yu Shen

Abstract

No abstract is available for this item.

Suggested Citation

  • Xiuyu J. Cong & Guosheng Yin & Yu Shen, 2007. "Marginal Analysis of Correlated Failure Time Data with Informative Cluster Sizes," Biometrics, The International Biometric Society, vol. 63(3), pages 663-672, September.
  • Handle: RePEc:bla:biomet:v:63:y:2007:i:3:p:663-672
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2006.00730.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dean Follmann & Michael Proschan & Eric Leifer, 2003. "Multiple Outputation: Inference for Complex Clustered Data by Averaging Analyses from Independent Data," Biometrics, The International Biometric Society, vol. 59(2), pages 420-429, June.
    2. E. Benhin & J. N. K. Rao & A. J. Scott, 2005. "Mean estimating equation approach to analysing cluster-correlated data with nonignorable cluster sizes," Biometrika, Biometrika Trust, vol. 92(2), pages 435-450, June.
    3. Guosheng Yin & Jianwen Cai, 2004. "Additive hazards model with multivariate failure time data," Biometrika, Biometrika Trust, vol. 91(4), pages 801-818, December.
    4. Limin X. Clegg & Jianwen Cai & Pranab K. Sen, 1999. "A Marginal Mixed Baseline Hazards Model for Multivariate Failure Time Data," Biometrics, The International Biometric Society, vol. 55(3), pages 805-812, September.
    5. John M. Williamson & Somnath Datta & Glen A. Satten, 2003. "Marginal Analyses of Clustered Data When Cluster Size Is Informative," Biometrics, The International Biometric Society, vol. 59(1), pages 36-42, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ling Lan & Dipankar Bandyopadhyay & Somnath Datta, 2017. "Non-parametric regression in clustered multistate current status data with informative cluster size," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(1), pages 31-57, January.
    2. Fan, Jie & Datta, Somnath, 2011. "Fitting marginal accelerated failure time models to clustered survival data with potentially informative cluster size," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3295-3303, December.
    3. Ling Chen & Yanqin Feng & Jianguo Sun, 2017. "Regression analysis of clustered failure time data with informative cluster size under the additive transformation models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 651-670, October.
    4. Zhang Xinyan & Sun Jianguo, 2013. "Semiparametric Regression Analysis of Clustered Interval-Censored Failure Time Data with Informative Cluster Size," The International Journal of Biostatistics, De Gruyter, vol. 9(2), pages 205-214, August.
    5. Zhang, Xinyan & Sun, Jianguo, 2010. "Regression analysis of clustered interval-censored failure time data with informative cluster size," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1817-1823, July.
    6. Chun Yin Lee & Kin Yau Wong & Kwok Fai Lam & Dipankar Bandyopadhyay, 2023. "A semiparametric joint model for cluster size and subunit‐specific interval‐censored outcomes," Biometrics, The International Biometric Society, vol. 79(3), pages 2010-2022, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ling Lan & Dipankar Bandyopadhyay & Somnath Datta, 2017. "Non-parametric regression in clustered multistate current status data with informative cluster size," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(1), pages 31-57, January.
    2. Joanna H. Shih & Michael P. Fay, 2017. "Pearson's chi-square test and rank correlation inferences for clustered data," Biometrics, The International Biometric Society, vol. 73(3), pages 822-834, September.
    3. Jaakko Nevalainen & Somnath Datta & Hannu Oja, 2014. "Inference on the marginal distribution of clustered data with informative cluster size," Statistical Papers, Springer, vol. 55(1), pages 71-92, February.
    4. Yin, Guosheng, 2007. "Model checking for additive hazards model with multivariate survival data," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 1018-1032, May.
    5. Glen McGee & Marianthi‐Anna Kioumourtzoglou & Marc G. Weisskopf & Sebastien Haneuse & Brent A. Coull, 2020. "On the interplay between exposure misclassification and informative cluster size," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1209-1226, November.
    6. Shaun R. Seaman & Menelaos Pavlou & Andrew J. Copas, 2014. "Methods for observed-cluster inference when cluster size is informative: A review and clarifications," Biometrics, The International Biometric Society, vol. 70(2), pages 449-456, June.
    7. Adane F. Wogu & Haolin Li & Shanshan Zhao & Hazel B. Nichols & Jianwen Cai, 2023. "Additive subdistribution hazards regression for competing risks data in case‐cohort studies," Biometrics, The International Biometric Society, vol. 79(4), pages 3010-3022, December.
    8. Sangwook Kang & Jianwen Cai, 2009. "Marginal Hazards Regression for Retrospective Studies within Cohort with Possibly Correlated Failure Time Data," Biometrics, The International Biometric Society, vol. 65(2), pages 405-414, June.
    9. David D. Hanagal, 2021. "RETRACTED ARTICLE: Positive Stable Shared Frailty Models Based on Additive Hazards," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(3), pages 431-453, December.
    10. Federico Bugni & Ivan Canay & Azeem Shaikh & Max Tabord-Meehan, 2022. "Inference for Cluster Randomized Experiments with Non-ignorable Cluster Sizes," Papers 2204.08356, arXiv.org, revised Apr 2024.
    11. Goele Massonnet & Paul Janssen & Tomasz Burzykowski, 2008. "Fitting Conditional Survival Models to Meta‐Analytic Data by Using a Transformation Toward Mixed‐Effects Models," Biometrics, The International Biometric Society, vol. 64(3), pages 834-842, September.
    12. Ying Huang & Brian Leroux, 2011. "Informative Cluster Sizes for Subcluster-Level Covariates and Weighted Generalized Estimating Equations," Biometrics, The International Biometric Society, vol. 67(3), pages 843-851, September.
    13. Sally Hunsberger & Lori Long & Sarah E. Reese & Gloria H. Hong & Ian A. Myles & Christa S. Zerbe & Pleonchan Chetchotisakd & Joanna H. Shih, 2022. "Rank correlation inferences for clustered data with small sample size," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(3), pages 309-330, August.
    14. Jaakko Nevalainen & Denis Larocque & Hannu Oja, 2007. "A weighted spatial median for clustered data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 355-379, February.
    15. Somnath Datta & Glen A. Satten, 2008. "A Signed-Rank Test for Clustered Data," Biometrics, The International Biometric Society, vol. 64(2), pages 501-507, June.
    16. Seo, Byungtae & Ha, Il Do, 2024. "Semiparametric accelerated failure time models under unspecified random effect distributions," Computational Statistics & Data Analysis, Elsevier, vol. 195(C).
    17. You-Gan Wang & Yudong Zhao, 2008. "Weighted Rank Regression for Clustered Data Analysis," Biometrics, The International Biometric Society, vol. 64(1), pages 39-45, March.
    18. Jie He & Hui Li & Shumei Zhang & Xiaogang Duan, 2019. "Additive hazards model with auxiliary subgroup survival information," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 128-149, January.
    19. Sun, Liuquan & Zhu, Liang & Sun, Jianguo, 2009. "Regression analysis of multivariate recurrent event data with time-varying covariate effects," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2214-2223, November.
    20. Giorgos Bakoyannis & Ying Zhang & Constantin T. Yiannoutsos, 2020. "Semiparametric regression and risk prediction with competing risks data under missing cause of failure," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 659-684, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:63:y:2007:i:3:p:663-672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.