IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v109y2022i2p535-541..html
   My bibliography  Save this article

Inverses of Matérn covariances on grids
[Spatial modeling with R-INLA: A review]

Author

Listed:
  • Joseph Guinness

Abstract

SummaryWe conduct a study of the aliased spectral densities of Matérn covariance functions on a regular grid of points, elucidating the properties of a popular approximation based on stochastic partial differential equations. While other researchers have shown that this approximation can work well for the covariance function, we find that it assigns too much power at high frequencies and does not provide increasingly accurate approximations to the inverse as the grid spacing goes to zero, except in the one-dimensional exponential covariance case.

Suggested Citation

  • Joseph Guinness, 2022. "Inverses of Matérn covariances on grids [Spatial modeling with R-INLA: A review]," Biometrika, Biometrika Trust, vol. 109(2), pages 535-541.
  • Handle: RePEc:oup:biomet:v:109:y:2022:i:2:p:535-541.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asab017
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Guttorp & Tilmann Gneiting, 2006. "Studies in the history of probability and statistics XLIX On the Matern correlation family," Biometrika, Biometrika Trust, vol. 93(4), pages 989-995, December.
    2. Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis A. Barboza & Shu Wei Chou Chen & Marcela Alfaro Córdoba & Eric J. Alfaro & Hugo G. Hidalgo, 2023. "Spatio‐temporal downscaling emulator for regional climate models," Environmetrics, John Wiley & Sons, Ltd., vol. 34(7), November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heinrich, Claudio & Pakkanen, Mikko S. & Veraart, Almut E.D., 2019. "Hybrid simulation scheme for volatility modulated moving average fields," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 224-244.
    2. Unn Dahlén & Johan Lindström & Marko Scholze, 2020. "Spatiotemporal reconstructions of global CO2‐fluxes using Gaussian Markov random fields," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.
    3. Silius M. Vandeskog & Sara Martino & Daniela Castro-Camilo & Håvard Rue, 2022. "Modelling Sub-daily Precipitation Extremes with the Blended Generalised Extreme Value Distribution," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 598-621, December.
    4. Bevilacqua, Moreno & Caamaño-Carrillo, Christian & Porcu, Emilio, 2022. "Unifying compactly supported and Matérn covariance functions in spatial statistics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    5. Kleiber, William & Nychka, Douglas, 2012. "Nonstationary modeling for multivariate spatial processes," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 76-91.
    6. Thea Roksvåg & Ingelin Steinsland & Kolbjørn Engeland, 2021. "A two‐field geostatistical model combining point and areal observations—A case study of annual runoff predictions in the Voss area," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 934-960, August.
    7. Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
    8. K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
    9. Laura M. Sangalli, 2021. "Spatial Regression With Partial Differential Equation Regularisation," International Statistical Review, International Statistical Institute, vol. 89(3), pages 505-531, December.
    10. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    11. Girard, Didier A., 2016. "Asymptotic near-efficiency of the “Gibbs-energy and empirical-variance” estimating functions for fitting Matérn models — I: Densely sampled processes," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 191-197.
    12. Finn Lindgren, 2015. "Comments on: Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 35-44, March.
    13. Andre Python & Andreas Bender & Marta Blangiardo & Janine B. Illian & Ying Lin & Baoli Liu & Tim C.D. Lucas & Siwei Tan & Yingying Wen & Davit Svanidze & Jianwei Yin, 2022. "A downscaling approach to compare COVID‐19 count data from databases aggregated at different spatial scales," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 202-218, January.
    14. Vanhatalo, Jarno & Veneranta, Lari & Hudd, Richard, 2012. "Species distribution modeling with Gaussian processes: A case study with the youngest stages of sea spawning whitefish (Coregonus lavaretus L. s.l.) larvae," Ecological Modelling, Elsevier, vol. 228(C), pages 49-58.
    15. Xiaoyu Xiong & Benjamin D. Youngman & Theodoros Economou, 2021. "Data fusion with Gaussian processes for estimation of environmental hazard events," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    16. Yuan Yan & Eva Cantoni & Chris Field & Margaret Treble & Joanna Mills Flemming, 2023. "Spatiotemporal modeling of mature‐at‐length data using a sliding window approach," Environmetrics, John Wiley & Sons, Ltd., vol. 34(2), March.
    17. Jonathan Rougier & Andrew Zammit-Mangion, 2016. "Visualization for Large-scale Gaussian Updates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1153-1161, December.
    18. Marcelo Cunha & Dani Gamerman & Montserrat Fuentes & Marina Paez, 2017. "A non-stationary spatial model for temperature interpolation applied to the state of Rio de Janeiro," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(5), pages 919-939, November.
    19. Caamaño-Carrillo, Christian & Bevilacqua, Moreno & López, Cristian & Morales-Oñate, Víctor, 2024. "Nearest neighbors weighted composite likelihood based on pairs for (non-)Gaussian massive spatial data with an application to Tukey-hh random fields estimation," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    20. Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:109:y:2022:i:2:p:535-541.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.