Discussion of ‘Gene hunting with hidden Markov model knockoffs’
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jared O'Connell & Deepti Gurdasani & Olivier Delaneau & Nicola Pirastu & Sheila Ulivi & Massimiliano Cocca & Michela Traglia & Jie Huang & Jennifer E Huffman & Igor Rudan & Ruth McQuillan & Ross M Fra, 2014. "A General Approach for Haplotype Phasing across the Full Spectrum of Relatedness," PLOS Genetics, Public Library of Science, vol. 10(4), pages 1-21, April.
- Leonardo Bottolo & Marc Chadeau-Hyam & David I Hastie & Tanja Zeller & Benoit Liquet & Paul Newcombe & Loic Yengo & Philipp S Wild & Arne Schillert & Andreas Ziegler & Sune F Nielsen & Adam S Butterwo, 2013. "GUESS-ing Polygenic Associations with Multiple Phenotypes Using a GPU-Based Evolutionary Stochastic Search Algorithm," PLOS Genetics, Public Library of Science, vol. 9(8), pages 1-17, August.
- M Sesia & C Sabatti & E J Candès, 2019. "Gene hunting with hidden Markov model knockoffs," Biometrika, Biometrika Trust, vol. 106(1), pages 1-18.
- Emmanuel Candès & Yingying Fan & Lucas Janson & Jinchi Lv, 2018. "Panning for gold: ‘model‐X’ knockoffs for high dimensional controlled variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(3), pages 551-577, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Emmanuel Candès & Chiara Sabatti, 2020. "Discussion of the Paper “Prediction, Estimation, and Attribution” by B. Efron," International Statistical Review, International Statistical Institute, vol. 88(S1), pages 60-63, December.
- Zihuai He & Linxi Liu & Michael E. Belloy & Yann Guen & Aaron Sossin & Xiaoxia Liu & Xinran Qi & Shiyang Ma & Prashnna K. Gyawali & Tony Wyss-Coray & Hua Tang & Chiara Sabatti & Emmanuel Candès & Mich, 2022. "GhostKnockoff inference empowers identification of putative causal variants in genome-wide association studies," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
- Pedro Delicado & Daniel Peña, 2023. "Understanding complex predictive models with ghost variables," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 107-145, March.
- Dong, Yan & Li, Daoji & Zheng, Zemin & Zhou, Jia, 2022. "Reproducible feature selection in high-dimensional accelerated failure time models," Statistics & Probability Letters, Elsevier, vol. 181(C).
- Rajchert, Andrew & Keich, Uri, 2023. "Controlling the false discovery rate via competition: Is the +1 needed?," Statistics & Probability Letters, Elsevier, vol. 197(C).
- Yumei Ren & Guoqiang Tang & Xin Li & Xuchang Chen, 2023. "A Study of Multifactor Quantitative Stock-Selection Strategies Incorporating Knockoff and Elastic Net-Logistic Regression," Mathematics, MDPI, vol. 11(16), pages 1-20, August.
- Yi Liu & Veronika Ročková & Yuexi Wang, 2021. "Variable selection with ABC Bayesian forests," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 453-481, July.
- Laura Freijeiro‐González & Manuel Febrero‐Bande & Wenceslao González‐Manteiga, 2022. "A Critical Review of LASSO and Its Derivatives for Variable Selection Under Dependence Among Covariates," International Statistical Review, International Statistical Institute, vol. 90(1), pages 118-145, April.
- Xie, Zilong & Chen, Yunxiao & von Davier, Matthias & Weng, Haolei, 2023. "Variable selection in latent variable models via knockoffs: an application to international large-scale assessment in education," LSE Research Online Documents on Economics 120812, London School of Economics and Political Science, LSE Library.
- Panxu Yuan & Yinfei Kong & Gaorong Li, 2024. "FDR control and power analysis for high-dimensional logistic regression via StabKoff," Statistical Papers, Springer, vol. 65(5), pages 2719-2749, July.
- Ruth Heller, 2020. "Comments on: Hierarchical inference for genome-wide association studies: a view on methodology with software," Computational Statistics, Springer, vol. 35(1), pages 51-55, March.
- Jeng, X. Jessie & Chen, Xiongzhi, 2019. "Predictor ranking and false discovery proportion control in high-dimensional regression," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 163-175.
- Challet, Damien & Bongiorno, Christian & Pelletier, Guillaume, 2021.
"Financial factors selection with knockoffs: Fund replication, explanatory and prediction networks,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
- Damien Challet & Christian Bongiorno & Guillaume Pelletier, 2021. "Financial factors selection with knockoffs: fund replication, explanatory and prediction networks," Post-Print hal-03165842, HAL.
- Damien Challet & Christian Bongiorno & Guillaume Pelletier, 2021. "Financial factors selection with knockoffs: fund replication, explanatory and prediction networks," Papers 2103.05921, arXiv.org.
- Wen, Xin & Li, Yang & Zheng, Zemin, 2024. "Scalable efficient reproducible multi-task learning via data splitting," Statistics & Probability Letters, Elsevier, vol. 208(C).
- Emre Demirkaya & Yang Feng & Pallavi Basu & Jinchi Lv, 2022. "Large-scale model selection in misspecified generalized linear models [Information theory and an extension of the maximum likelihood principle]," Biometrika, Biometrika Trust, vol. 109(1), pages 123-136.
- Jose A Seoane & Colin Campbell & Ian N M Day & Juan P Casas & Tom R Gaunt, 2014. "Canonical Correlation Analysis for Gene-Based Pleiotropy Discovery," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-13, October.
- Subhadeep Mukhopadhyay, 2021. "InfoGram and Admissible Machine Learning," Papers 2108.07380, arXiv.org, revised Aug 2021.
- D García Rasines & G A Young, 2023. "Splitting strategies for post-selection inference," Biometrika, Biometrika Trust, vol. 110(3), pages 597-614.
- Shi, Chengchun & Xu, Tianlin & Bergsma, Wicher & Li, Lexin, 2021. "Double generative adversarial networks for conditional independence testing," LSE Research Online Documents on Economics 112550, London School of Economics and Political Science, LSE Library.
- Masao Ueki, 2024. "Data-Adaptive Multivariate Test for Genomic Studies Using Fused Lasso," Mathematics, MDPI, vol. 12(10), pages 1-16, May.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:106:y:2019:i:1:p:19-22.. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.