IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v171y2019icp163-175.html
   My bibliography  Save this article

Predictor ranking and false discovery proportion control in high-dimensional regression

Author

Listed:
  • Jeng, X. Jessie
  • Chen, Xiongzhi

Abstract

We propose a ranking and selection procedure to prioritize relevant predictors and control false discovery proportion (FDP) in variable selection. Our procedure utilizes a new ranking method built upon the de-sparsified Lasso estimator. We show that the new ranking method achieves the optimal order of minimum non-zero effects in ranking relevant predictors ahead of irrelevant ones. Adopting the new ranking method, we develop a variable selection procedure to asymptotically control FDP at a user-specified level. We show that our procedure can consistently estimate the FDP of variable selection as long as the de-sparsified Lasso estimator is asymptotically normal. In simulations, our procedure compares favorably to existing methods in ranking efficiency and FDP control when the regression model is relatively sparse.

Suggested Citation

  • Jeng, X. Jessie & Chen, Xiongzhi, 2019. "Predictor ranking and false discovery proportion control in high-dimensional regression," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 163-175.
  • Handle: RePEc:eee:jmvana:v:171:y:2019:i:c:p:163-175
    DOI: 10.1016/j.jmva.2018.12.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X18302689
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2018.12.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meinshausen, Nicolai & Meier, Lukas & Bühlmann, Peter, 2009. "p-Values for High-Dimensional Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1671-1681.
    2. Max Grazier G'Sell & Stefan Wager & Alexandra Chouldechova & Robert Tibshirani, 2016. "Sequential selection procedures and false discovery rate control," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 423-444, March.
    3. Ruben Dezeure & Peter Bühlmann & Cun-Hui Zhang, 2017. "High-dimensional simultaneous inference with the bootstrap," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 685-719, December.
    4. Sun, Wenguang & Cai, T. Tony, 2007. "Oracle and Adaptive Compound Decision Rules for False Discovery Rate Control," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 901-912, September.
    5. Friguet, Chloé & Kloareg, Maela & Causeur, David, 2009. "A Factor Model Approach to Multiple Testing Under Dependence," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1406-1415.
    6. Ruben Dezeure & Peter Bühlmann & Cun-Hui Zhang, 2017. "Rejoinder on: High-dimensional simultaneous inference with the bootstrap," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 751-758, December.
    7. Emmanuel Candès & Yingying Fan & Lucas Janson & Jinchi Lv, 2018. "Panning for gold: ‘model‐X’ knockoffs for high dimensional controlled variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(3), pages 551-577, June.
    8. Christopher Genovese & Larry Wasserman, 2002. "Operating characteristics and extensions of the false discovery rate procedure," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 499-517, August.
    9. Efron, Bradley, 2007. "Correlation and Large-Scale Simultaneous Significance Testing," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 93-103, March.
    10. Cun-Hui Zhang & Stephanie S. Zhang, 2014. "Confidence intervals for low dimensional parameters in high dimensional linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 217-242, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claude Renaux & Laura Buzdugan & Markus Kalisch & Peter Bühlmann, 2020. "Hierarchical inference for genome-wide association studies: a view on methodology with software," Computational Statistics, Springer, vol. 35(1), pages 1-40, March.
    2. Tanin Sirimongkolkasem & Reza Drikvandi, 2019. "On Regularisation Methods for Analysis of High Dimensional Data," Annals of Data Science, Springer, vol. 6(4), pages 737-763, December.
    3. Victor Chernozhukov & Wolfgang Härdle & Chen Huang & Weining Wang, 2018. "LASSO-driven inference in time and space," CeMMAP working papers CWP36/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Hanwen Huang, 2017. "Controlling the false discoveries in LASSO," Biometrics, The International Biometric Society, vol. 73(4), pages 1102-1110, December.
    5. Wenguang Sun & T. Tony Cai, 2009. "Large‐scale multiple testing under dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 393-424, April.
    6. Ruben Dezeure & Peter Bühlmann & Cun-Hui Zhang, 2017. "Rejoinder on: High-dimensional simultaneous inference with the bootstrap," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 751-758, December.
    7. Zhu, Ke & Liu, Hanzhong, 2022. "Confidence intervals for parameters in high-dimensional sparse vector autoregression," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    8. Shiyun Chen & Ery Arias-Castro, 2021. "On the power of some sequential multiple testing procedures," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(2), pages 311-336, April.
    9. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    10. Gómez-Villegas Miguel A. & Salazar Isabel & Sanz Luis, 2014. "A Bayesian decision procedure for testing multiple hypotheses in DNA microarray experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(1), pages 49-65, February.
    11. Nicolas Städler & Sach Mukherjee, 2017. "Two-sample testing in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 225-246, January.
    12. Long Qu & Dan Nettleton & Jack C. M. Dekkers, 2012. "Improved Estimation of the Noncentrality Parameter Distribution from a Large Number of t-Statistics, with Applications to False Discovery Rate Estimation in Microarray Data Analysis," Biometrics, The International Biometric Society, vol. 68(4), pages 1178-1187, December.
    13. Damian Kozbur, 2020. "Analysis of Testing‐Based Forward Model Selection," Econometrica, Econometric Society, vol. 88(5), pages 2147-2173, September.
    14. Cipolli III, William & Hanson, Timothy & McLain, Alexander C., 2016. "Bayesian nonparametric multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 64-79.
    15. Lee, Donghwan & Lee, Youngjo, 2016. "Extended likelihood approach to multiple testing with directional error control under a hidden Markov random field model," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 1-13.
    16. Qing Zhou & Seunghyun Min, 2017. "Uncertainty quantification under group sparsity," Biometrika, Biometrika Trust, vol. 104(3), pages 613-632.
    17. Hai Shu & Bin Nan & Robert Koeppe, 2015. "Multiple testing for neuroimaging via hidden Markov random field," Biometrics, The International Biometric Society, vol. 71(3), pages 741-750, September.
    18. Friguet, Chloé & Causeur, David, 2011. "Estimation of the proportion of true null hypotheses in high-dimensional data under dependence," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2665-2676, September.
    19. Lan, Wei & Zhong, Ping-Shou & Li, Runze & Wang, Hansheng & Tsai, Chih-Ling, 2016. "Testing a single regression coefficient in high dimensional linear models," Journal of Econometrics, Elsevier, vol. 195(1), pages 154-168.
    20. T. Tony Cai & Wenguang Sun & Weinan Wang, 2019. "Covariate‐assisted ranking and screening for large‐scale two‐sample inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 187-234, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:171:y:2019:i:c:p:163-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.