IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v191y2022ics0047259x22000392.html
   My bibliography  Save this article

Limiting spectral distribution of large dimensional Spearman’s rank correlation matrices

Author

Listed:
  • Wu, Zeyu
  • Wang, Cheng

Abstract

In this paper, we study the empirical spectral distribution of Spearman’s rank correlation matrices, under the assumption that the observations are independent and identically distributed random vectors and the features are correlated. We show that the limiting spectral distribution is the generalized Marc̆enko–Pastur law with the covariance matrix of the observation after standardized transformation. With these results, we compare several classical covariance/correlation matrices including the sample covariance matrix, Pearson’s correlation matrix, Kendall’s correlation matrix and Spearman’s correlation matrix.

Suggested Citation

  • Wu, Zeyu & Wang, Cheng, 2022. "Limiting spectral distribution of large dimensional Spearman’s rank correlation matrices," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:jmvana:v:191:y:2022:i:c:s0047259x22000392
    DOI: 10.1016/j.jmva.2022.105011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X22000392
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2022.105011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guangyu Mao, 2017. "Robust test for independence in high dimensions," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(20), pages 10036-10050, October.
    2. Jianqing Fan & Yuan Liao & Han Liu, 2016. "An overview of the estimation of large covariance and precision matrices," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 1-32, February.
    3. Fang Han & Shizhe Chen & Han Liu, 2017. "Distribution-free tests of independence in high dimensions," Biometrika, Biometrika Trust, vol. 104(4), pages 813-828.
    4. L Weihs & M Drton & N Meinshausen, 2018. "Symmetric rank covariances: a generalized framework for nonparametric measures of dependence," Biometrika, Biometrika Trust, vol. 105(3), pages 547-562.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongjian Shi & Marc Hallin & Mathias Drton & Fang Han, 2020. "Rate-Optimality of Consistent Distribution-Free Tests of Independence Based on Center-Outward Ranks and Signs," Working Papers ECARES 2020-23, ULB -- Universite Libre de Bruxelles.
    2. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2019. "Cross-validated covariance estimators for high-dimensional minimum-variance portfolios," Papers 1910.13960, arXiv.org, revised Oct 2020.
    3. Kashlak, Adam B., 2021. "Non-asymptotic error controlled sparse high dimensional precision matrix estimation," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    4. Huangdi Yi & Qingzhao Zhang & Cunjie Lin & Shuangge Ma, 2022. "Information‐incorporated Gaussian graphical model for gene expression data," Biometrics, The International Biometric Society, vol. 78(2), pages 512-523, June.
    5. Zhou Tang & Zhangsheng Yu & Cheng Wang, 2020. "A fast iterative algorithm for high-dimensional differential network," Computational Statistics, Springer, vol. 35(1), pages 95-109, March.
    6. Yan Zhang & Jiyuan Tao & Zhixiang Yin & Guoqiang Wang, 2022. "Improved Large Covariance Matrix Estimation Based on Efficient Convex Combination and Its Application in Portfolio Optimization," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
    7. Hongjian Shi & Mathias Drton & Marc Hallin & Fang Han, 2023. "Semiparametrically Efficient Tests of Multivariate Independence Using Center-Outward Quadrant, Spearman, and Kendall Statistics," Working Papers ECARES 2023-03, ULB -- Universite Libre de Bruxelles.
    8. Lidan Tan & Khai X. Chiong & Hyungsik Roger Moon, 2018. "Estimation of High-Dimensional Seemingly Unrelated Regression Models," Papers 1811.05567, arXiv.org.
    9. Li, Degui, 2024. "Estimation of Large Dynamic Covariance Matrices: A Selective Review," Econometrics and Statistics, Elsevier, vol. 29(C), pages 16-30.
    10. Zeyu Wu & Cheng Wang & Weidong Liu, 2023. "A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(4), pages 619-648, August.
    11. Hengxu Lin & Dong Zhou & Weiqing Liu & Jiang Bian, 2021. "Deep Risk Model: A Deep Learning Solution for Mining Latent Risk Factors to Improve Covariance Matrix Estimation," Papers 2107.05201, arXiv.org, revised Oct 2021.
    12. Ata Kabán & Efstratios Palias, 2024. "A Bhattacharyya-type Conditional Error Bound for Quadratic Discriminant Analysis," Methodology and Computing in Applied Probability, Springer, vol. 26(4), pages 1-17, December.
    13. Mao, Guangyu, 2018. "Testing independence in high dimensions using Kendall’s tau," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 128-137.
    14. Ivair R. Silva & Yan Zhuang & Julio C. A. da Silva Junior, 2022. "Kronecker delta method for testing independence between two vectors in high-dimension," Statistical Papers, Springer, vol. 63(2), pages 343-365, April.
    15. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
    16. Khai X. Chiong & Hyungsik Roger Moon, 2017. "Estimation of Graphical Models using the $L_{1,2}$ Norm," Papers 1709.10038, arXiv.org, revised Oct 2017.
    17. Zhang, Qingzhao & Ma, Shuangge & Huang, Yuan, 2021. "Promote sign consistency in the joint estimation of precision matrices," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    18. Gautam Sabnis & Debdeep Pati & Anirban Bhattacharya, 2019. "Compressed Covariance Estimation with Automated Dimension Learning," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 466-481, December.
    19. Brownlees, Christian & Mesters, Geert, 2021. "Detecting granular time series in large panels," Journal of Econometrics, Elsevier, vol. 220(2), pages 544-561.
    20. Mingjuan Zhang & Libin Jin, 2024. "High-Dimensional U-Statistics Type Hypothesis Testing via Jackknife Pseudo-Values with Multiplier Bootstrap," Mathematics, MDPI, vol. 12(23), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:191:y:2022:i:c:s0047259x22000392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.