IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v103y2016i1p49-70..html
   My bibliography  Save this article

Going off grid: computationally efficient inference for log-Gaussian Cox processes

Author

Listed:
  • D. Simpson
  • J. B. Illian
  • F. Lindgren
  • S. H. Sørbye
  • H. Rue

Abstract

This paper introduces a new method for performing computational inference on log-Gaussian Cox processes. The likelihood is approximated directly by making use of a continuously specified Gaussian random field. We show that for sufficiently smooth Gaussian random field prior distributions, the approximation can converge with arbitrarily high order, whereas an approximation based on a counting process on a partition of the domain achieves only first-order convergence. The results improve upon the general theory of convergence for stochastic partial differential equation models introduced by Lindgren et al. (2011). The new method is demonstrated on a standard point pattern dataset, and two interesting extensions to the classical log-Gaussian Cox process framework are discussed. The first extension considers variable sampling effort throughout the observation window and implements the method of Chakraborty et al. (2011). The second extension constructs a log-Gaussian Cox process on the world's oceans. The analysis is performed using integrated nested Laplace approximation for fast approximate inference.

Suggested Citation

  • D. Simpson & J. B. Illian & F. Lindgren & S. H. Sørbye & H. Rue, 2016. "Going off grid: computationally efficient inference for log-Gaussian Cox processes," Biometrika, Biometrika Trust, vol. 103(1), pages 49-70.
  • Handle: RePEc:oup:biomet:v:103:y:2016:i:1:p:49-70.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asv064
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Avishek Chakraborty & Alan E. Gelfand & Adam M. Wilson & Andrew M. Latimer & John A. Silander, 2011. "Point pattern modelling for degraded presence‐only data over large regions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 60(5), pages 757-776, November.
    2. Peter J. Diggle & Raquel Menezes & Ting‐li Su, 2010. "Geostatistical inference under preferential sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 191-232, March.
    3. Waagepetersen, Rasmus, 2004. "Convergence of posteriors for discretized log Gaussian Cox processes," Statistics & Probability Letters, Elsevier, vol. 66(3), pages 229-235, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John M. Humphreys & Robert B. Srygley & David H. Branson, 2022. "Geographic Variation in Migratory Grasshopper Recruitment under Projected Climate Change," Geographies, MDPI, vol. 2(1), pages 1-19, January.
    2. Heaton, Matthew J. & Dahl, Benjamin K. & Dayley, Caleb & Warr, Richard L. & White, Philip, 2024. "Integrating machine learning and Bayesian nonparametrics for flexible modeling of point pattern data," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    3. Arnone, Eleonora & Ferraccioli, Federico & Pigolotti, Clara & Sangalli, Laura M., 2022. "A roughness penalty approach to estimate densities over two-dimensional manifolds," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    4. Laura Serra & Claudio Detotto & Marco Vannini, 2022. "Public lands as a mitigator of wildfire burned area using a spatio-temporal model applied in Sardinia," Letters in Spatial and Resource Sciences, Springer, vol. 15(3), pages 621-635, December.
    5. Wang, Craig & Furrer, Reinhard, 2021. "Combining heterogeneous spatial datasets with process-based spatial fusion models: A unifying framework," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    6. Janine B. Illian & David F. R. P. Burslem, 2017. "Improving the usability of spatial point process methodology: an interdisciplinary dialogue between statistics and ecology," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 495-520, October.
    7. Unn Dahlén & Johan Lindström & Marko Scholze, 2020. "Spatiotemporal reconstructions of global CO2‐fluxes using Gaussian Markov random fields," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.
    8. Williamson, Laura D. & Scott, Beth E. & Laxton, Megan & Illian, Janine B. & Todd, Victoria L.G. & Miller, Peter I. & Brookes, Kate L., 2022. "Comparing distribution of harbour porpoise using generalized additive models and hierarchical Bayesian models with integrated nested laplace approximation," Ecological Modelling, Elsevier, vol. 470(C).
    9. Fernanda Valente & Márcio Laurini, 2020. "Tornado Occurrences in the United States: A Spatio-Temporal Point Process Approach," Econometrics, MDPI, vol. 8(2), pages 1-26, June.
    10. David L. Miller & Richard Glennie & Andrew E. Seaton, 2020. "Understanding the Stochastic Partial Differential Equation Approach to Smoothing," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(1), pages 1-16, March.
    11. Jorge Sicacha-Parada & Diego Pavon-Jordan & Ingelin Steinsland & Roel May & Bård Stokke & Ingar Jostein Øien, 2022. "A Spatial Modeling Framework for Monitoring Surveys with Different Sampling Protocols with a Case Study for Bird Abundance in Mid-Scandinavia," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 562-591, September.
    12. Federico Ferraccioli & Eleonora Arnone & Livio Finos & James O. Ramsay & Laura M. Sangalli, 2021. "Nonparametric density estimation over complicated domains," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 346-368, April.
    13. María P. Frías & Antoni Torres-Signes & María D. Ruiz-Medina & Jorge Mateu, 2022. "Spatial Cox processes in an infinite-dimensional framework," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 175-203, March.
    14. André Victor Ribeiro Amaral & Elias Teixeira Krainski & Ruiman Zhong & Paula Moraga, 2024. "Model-Based Geostatistics Under Spatially Varying Preferential Sampling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 766-792, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.
    2. Aubry, Philippe & Francesiaz, Charlotte & Guillemain, Matthieu, 2024. "On the impact of preferential sampling on ecological status and trend assessment," Ecological Modelling, Elsevier, vol. 492(C).
    3. Christophe Botella & Alexis Joly & Pascal Monestiez & Pierre Bonnet & François Munoz, 2020. "Bias in presence-only niche models related to sampling effort and species niches: Lessons for background point selection," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-18, May.
    4. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    5. David I Warton & Ian W Renner & Daniel Ramp, 2013. "Model-Based Control of Observer Bias for the Analysis of Presence-Only Data in Ecology," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-9, November.
    6. Lucia Paci & Alan E. Gelfand & and María Asunción Beamonte & Pilar Gargallo & Manuel Salvador, 2020. "Spatial hedonic modelling adjusted for preferential sampling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 169-192, January.
    7. Brian Conroy & Lance A. Waller & Ian D. Buller & Gregory M. Hacker & James R. Tucker & Mark G. Novak, 2023. "A Shared Latent Process Model to Correct for Preferential Sampling in Disease Surveillance Systems," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(3), pages 483-501, September.
    8. André Victor Ribeiro Amaral & Elias Teixeira Krainski & Ruiman Zhong & Paula Moraga, 2024. "Model-Based Geostatistics Under Spatially Varying Preferential Sampling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 766-792, December.
    9. Paul Harris & Bruno Lanfranco & Binbin Lu & Alexis Comber, 2020. "Influence of Geographical Effects in Hedonic Pricing Models for Grass-Fed Cattle in Uruguay," Agriculture, MDPI, vol. 10(7), pages 1-17, July.
    10. John M. Humphreys & Robert B. Srygley & David H. Branson, 2022. "Geographic Variation in Migratory Grasshopper Recruitment under Projected Climate Change," Geographies, MDPI, vol. 2(1), pages 1-19, January.
    11. Duncan Lee & Claire Ferguson & E. Marian Scott, 2011. "Constructing representative air quality indicators with measures of uncertainty," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(1), pages 109-126, January.
    12. Alexander Malinowski & Martin Schlather & Zhengjun Zhang, 2016. "Intrinsically weighted means and non-ergodic marked point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(1), pages 1-24, February.
    13. Simon N. Wood & Zheyuan Li & Gavin Shaddick & Nicole H. Augustin, 2017. "Generalized Additive Models for Gigadata: Modeling the U.K. Black Smoke Network Daily Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1199-1210, July.
    14. A. Meilán-Vila & R. Fernández-Casal & R. M. Crujeiras & M. Francisco-Fernández, 2021. "A computational validation for nonparametric assessment of spatial trends," Computational Statistics, Springer, vol. 36(4), pages 2939-2965, December.
    15. Johnston, Alison & Moran, Nick & Musgrove, Andy & Fink, Daniel & Baillie, Stephen R., 2020. "Estimating species distributions from spatially biased citizen science data," Ecological Modelling, Elsevier, vol. 422(C).
    16. Victor De Oliveira & Zifei Han, 2023. "Approximate reference priors for Gaussian random fields," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 296-326, March.
    17. Humphreys, John M. & Srygley, Robert B. & Lawton, Douglas & Hudson, Amy R. & Branson, David H., 2022. "Grasshoppers exhibit asynchrony and spatial non-stationarity in response to the El Niño/Southern and Pacific Decadal Oscillations," Ecological Modelling, Elsevier, vol. 471(C).
    18. Daniel, Jeffrey & Horrocks, Julie & Umphrey, Gary J., 2018. "Penalized composite likelihoods for inhomogeneous Gibbs point process models," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 104-116.
    19. Kyung-Duk Min & Ho-Jang Kwon & KyooSang Kim & Sun-Young Kim, 2017. "Air Pollution Monitoring Design for Epidemiological Application in a Densely Populated City," IJERPH, MDPI, vol. 14(7), pages 1-12, June.
    20. Erin M. Schliep & Christopher K. Wikle & Ranadeep Daw, 2023. "Correcting for informative sampling in spatial covariance estimation and kriging predictions," Journal of Geographical Systems, Springer, vol. 25(4), pages 587-613, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:103:y:2016:i:1:p:49-70.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.