IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v102y2015i4p809-827..html
   My bibliography  Save this article

Bayesian inference for partially observed stochastic differential equations driven by fractional Brownian motion

Author

Listed:
  • A. Beskos
  • J. Dureau
  • K. Kalogeropoulos

Abstract

We consider continuous-time diffusion models driven by fractional Brownian motion. Observations are assumed to possess a nontrivial likelihood given the latent path. Due to the non-Markovian and high-dimensional nature of the latent path, estimating posterior expectations is computationally challenging. We present a reparameterization framework based on the Davies and Harte method for sampling stationary Gaussian processes and use it to construct a Markov chain Monte Carlo algorithm that allows computationally efficient Bayesian inference. The algorithm is based on a version of hybrid Monte Carlo simulation that delivers increased efficiency when used on the high-dimensional latent variables arising in this context. We specify the methodology on a stochastic volatility model, allowing for memory in the volatility increments through a fractional specification. The method is demonstrated on simulated data and on the S&P 500/VIX time series. In the latter case, the posterior distribution favours values of the Hurst parameter smaller than $1/2$, pointing towards medium-range dependence.

Suggested Citation

  • A. Beskos & J. Dureau & K. Kalogeropoulos, 2015. "Bayesian inference for partially observed stochastic differential equations driven by fractional Brownian motion," Biometrika, Biometrika Trust, vol. 102(4), pages 809-827.
  • Handle: RePEc:oup:biomet:v:102:y:2015:i:4:p:809-827.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asv051
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.
    2. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 280-283, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paramahansa Pramanik & Edward L. Boone & Ryad A. Ghanam, 2024. "Parametric Estimation in Fractional Stochastic Differential Equation," Stats, MDPI, vol. 7(3), pages 1-16, July.
    2. Elisa Alòs & Maria Elvira Mancino & Tai-Ho Wang, 2019. "Volatility and volatility-linked derivatives: estimation, modeling, and pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 321-349, December.
    3. Qi Zhao & Alexandra Chronopoulou, 2023. "Delta-hedging in fractional volatility models," Annals of Finance, Springer, vol. 19(1), pages 119-140, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Cuñado & L. Gil-Alana & F. Gracia, 2009. "US stock market volatility persistence: evidence before and after the burst of the IT bubble," Review of Quantitative Finance and Accounting, Springer, vol. 33(3), pages 233-252, October.
    2. Elisa Alòs & Maria Elvira Mancino & Tai-Ho Wang, 2019. "Volatility and volatility-linked derivatives: estimation, modeling, and pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 321-349, December.
    3. Ata Assaf & Luis Alberiko Gil-Alana & Khaled Mokni, 2022. "True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods," Empirical Economics, Springer, vol. 63(3), pages 1543-1570, September.
    4. Sibbertsen, Philipp & Leschinski, Christian & Busch, Marie, 2018. "A multivariate test against spurious long memory," Journal of Econometrics, Elsevier, vol. 203(1), pages 33-49.
    5. Erhard Reschenhofer & Manveer K. Mangat, 2021. "Fast computation and practical use of amplitudes at non-Fourier frequencies," Computational Statistics, Springer, vol. 36(3), pages 1755-1773, September.
    6. Krämer, Walter & Sibbertsen, Philipp & Kleiber, Christian, 2001. "Long memory vs. structural change in financial time series," Technical Reports 2001,37, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    7. David E. Allen & Michael McAleer & Marcel Scharth, 2009. "Realized Volatility Risk," CIRJE F-Series CIRJE-F-693, CIRJE, Faculty of Economics, University of Tokyo.
    8. Pierre Perron & Zhongjun Qu, 2007. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts," Boston University - Department of Economics - Working Papers Series wp2007-044, Boston University - Department of Economics.
    9. David E. Allen & Michael McAleer & Marcel Scharth, 2014. "Asymmetric Realized Volatility Risk," JRFM, MDPI, vol. 7(2), pages 1-30, June.
    10. Guglielmo Caporale & Luis Gil-Alana, 2009. "Multiple shifts and fractional integration in the US and UK unemployment rates," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 33(4), pages 364-375, October.
    11. Bouezmarni, Taoufik & Van Bellegem, Sébastien, 2009. "Nonparametric Beta Kernel Estimator for Long Memory Time Series," IDEI Working Papers 633, Institut d'Économie Industrielle (IDEI), Toulouse.
    12. Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.
    13. Luis A. Gil-Alana & Antonio Moreno & Seonghoon Cho, 2012. "The Deaton paradox in a long memory context with structural breaks," Applied Economics, Taylor & Francis Journals, vol. 44(25), pages 3309-3322, September.
    14. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    15. Smith, Aaron, 2005. "Level Shifts and the Illusion of Long Memory in Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 321-335, July.
    16. Guglielmo Maria Caporale & Hector Carcel & Luis A. Gil-Alana, 2015. "Modelling African inflation rates: nonlinear deterministic terms and long-range dependence," Applied Economics Letters, Taylor & Francis Journals, vol. 22(5), pages 421-424, March.
    17. Wang, Xiao-Tian & Wu, Min & Zhou, Ze-Min & Jing, Wei-Shu, 2012. "Pricing European option with transaction costs under the fractional long memory stochastic volatility model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1469-1480.
    18. Liudas Giraitis & Piotr Kokoszka & Remigijus Leipus & Gilles Teyssière, 2000. "Semiparametric Estimation of the Intensity of Long Memory in Conditional Heteroskedasticity," Statistical Inference for Stochastic Processes, Springer, vol. 3(1), pages 113-128, January.
    19. Juan J. Dolado & Jesús Gonzalo & Laura Mayoral, 2005. "What is What? A Simple Time-Domain Test of Long-memory vs. Structural Breaks," Working Papers 258, Barcelona School of Economics.
    20. Carlos P. Barros & Luis A. Gil-Alana & Zhongfei Chen, 2016. "Exchange rate persistence of the Chinese yuan against the US dollar in the NDF market," Empirical Economics, Springer, vol. 51(4), pages 1399-1414, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:102:y:2015:i:4:p:809-827.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.