IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i4p1469-1480.html
   My bibliography  Save this article

Pricing European option with transaction costs under the fractional long memory stochastic volatility model

Author

Listed:
  • Wang, Xiao-Tian
  • Wu, Min
  • Zhou, Ze-Min
  • Jing, Wei-Shu

Abstract

This paper deals with the problem of discrete time option pricing using the fractional long memory stochastic volatility model with transaction costs. Through the ‘anchoring and adjustment’ argument in a discrete time setting, a European call option pricing formula is obtained.

Suggested Citation

  • Wang, Xiao-Tian & Wu, Min & Zhou, Ze-Min & Jing, Wei-Shu, 2012. "Pricing European option with transaction costs under the fractional long memory stochastic volatility model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1469-1480.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:4:p:1469-1480
    DOI: 10.1016/j.physa.2011.11.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111008491
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.11.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert J. Elliott & John Van Der Hoek, 2003. "A General Fractional White Noise Theory And Applications To Finance," Mathematical Finance, Wiley Blackwell, vol. 13(2), pages 301-330, April.
    2. Erzgräber, Hartmut & Strozzi, Fernanda & Zaldívar, José-Manuel & Touchette, Hugo & Gutiérrez, Eugénio & Arrowsmith, David K., 2008. "Time series analysis and long range correlations of Nordic spot electricity market data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6567-6574.
    3. Leland, Hayne E, 1985. "Option Pricing and Replication with Transactions Costs," Journal of Finance, American Finance Association, vol. 40(5), pages 1283-1301, December.
    4. Ozdemir, Zeynel Abidin, 2009. "Linkages between international stock markets: A multivariate long-memory approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(12), pages 2461-2468.
    5. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.
    6. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    7. Shleifer, Andrei, 2000. "Inefficient Markets: An Introduction to Behavioral Finance," OUP Catalogue, Oxford University Press, number 9780198292272.
    8. Wang, Xiao-Tian, 2010. "Scaling and long range dependence in option pricing, IV: Pricing European options with transaction costs under the multifractional Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 789-796.
    9. Pong, Shiuyan & Shackleton, Mark B. & Taylor, Stephen J. & Xu, Xinzhong, 2004. "Forecasting currency volatility: A comparison of implied volatilities and AR(FI)MA models," Journal of Banking & Finance, Elsevier, vol. 28(10), pages 2541-2563, October.
    10. Tomas Björk & Henrik Hult, 2005. "A note on Wick products and the fractional Black-Scholes model," Finance and Stochastics, Springer, vol. 9(2), pages 197-209, April.
    11. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    12. De Long, J Bradford, et al, 1990. "Positive Feedback Investment Strategies and Destabilizing Rational Speculation," Journal of Finance, American Finance Association, vol. 45(2), pages 379-395, June.
    13. Cajueiro, Daniel O. & Tabak, Benjamin M., 2009. "Testing for long-range dependence in the Brazilian term structure of interest rates," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1559-1573.
    14. Tabak, Benjamin M. & Cajueiro, Daniel O., 2005. "The long-range dependence behavior of the term structure of interest rates in Japan," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 418-426.
    15. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    16. Wang, Xiao-Tian, 2010. "Scaling and long-range dependence in option pricing I: Pricing European option with transaction costs under the fractional Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 438-444.
    17. Cajueiro, Daniel O & Tabak, Benjamin M, 2004. "The Hurst exponent over time: testing the assertion that emerging markets are becoming more efficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 521-537.
    18. Alvarez-Ramirez, Jose & Alvarez, Jesus & Rodriguez, Eduardo & Fernandez-Anaya, Guillermo, 2008. "Time-varying Hurst exponent for US stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6159-6169.
    19. Mariani, M.C. & Florescu, I. & Beccar Varela, M.P. & Ncheuguim, E., 2009. "Long correlations and Levy models applied to the study of memory effects in high frequency (tick) data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1659-1664.
    20. De Bondt, Werner F M & Thaler, Richard H, 1987. "Further Evidence on Investor Overreaction and Stock Market Seasonalit y," Journal of Finance, American Finance Association, vol. 42(3), pages 557-581, July.
    21. Ray, Bonnie K & Tsay, Ruey S, 2000. "Long-Range Dependence in Daily Stock Volatilities," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 254-262, April.
    22. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    23. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 280-283, July.
    24. Potters, Marc & Bouchaud, Jean-Philippe & Sestovic, Dragan, 2001. "Hedged Monte-Carlo: low variance derivative pricing with objective probabilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 289(3), pages 517-525.
    25. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Kyong-Hui & Kim, Nam-Ung & Ju, Dong-Chol & Ri, Ju-Hyang, 2020. "Efficient hedging currency options in fractional Brownian motion model with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    2. Xiao, Wei-Lin & Zhang, Wei-Guo & Zhang, Xili & Zhang, Xiaoli, 2012. "Pricing model for equity warrants in a mixed fractional Brownian environment and its algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6418-6431.
    3. M. Rezaei & A. R. Yazdanian & A. Ashrafi & S. M. Mahmoudi, 2022. "Numerically Pricing Nonlinear Time-Fractional Black–Scholes Equation with Time-Dependent Parameters Under Transaction Costs," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 243-280, June.
    4. Foad Shokrollahi, 2017. "The evaluation of geometric Asian power options under time changed mixed fractional Brownian motion," Papers 1712.05254, arXiv.org.
    5. Guo, Zhidong & Yuan, Hongjun, 2014. "Pricing European option under the time-changed mixed Brownian-fractional Brownian model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 73-79.
    6. Farshid Mehrdoust & Ali Reza Najafi, 2018. "Pricing European Options under Fractional Black–Scholes Model with a Weak Payoff Function," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 685-706, August.
    7. Sun, Lin, 2013. "Pricing currency options in the mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3441-3458.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiao-Tian, 2011. "Scaling and long-range dependence in option pricing V: Multiscaling hedging and implied volatility smiles under the fractional Black–Scholes model with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1623-1634.
    2. Wang, Xiao-Tian, 2010. "Scaling and long range dependence in option pricing, IV: Pricing European options with transaction costs under the multifractional Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 789-796.
    3. Wang, Xiao-Tian, 2010. "Scaling and long-range dependence in option pricing I: Pricing European option with transaction costs under the fractional Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 438-444.
    4. Xiao, Wei-Lin & Zhang, Wei-Guo & Zhang, Xili & Zhang, Xiaoli, 2012. "Pricing model for equity warrants in a mixed fractional Brownian environment and its algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6418-6431.
    5. Xiao, Weilin & Zhang, Weiguo & Xu, Weijun & Zhang, Xili, 2012. "The valuation of equity warrants in a fractional Brownian environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1742-1752.
    6. Sun, Lin, 2013. "Pricing currency options in the mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3441-3458.
    7. Foad Shokrollahi, 2017. "Fractional delta hedging strategy for pricing currency options with transaction costs," Papers 1702.00037, arXiv.org.
    8. Gerlich, Nikolas & Rostek, Stefan, 2015. "Estimating serial correlation and self-similarity in financial time series—A diversification approach with applications to high frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 84-98.
    9. Wang, Xiao-Tian & Zhu, En-Hui & Tang, Ming-Ming & Yan, Hai-Gang, 2010. "Scaling and long-range dependence in option pricing II: Pricing European option with transaction costs under the mixed Brownian–fractional Brownian model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 445-451.
    10. Bhandari, Avishek, 2020. "Long memory and fractality among global equity markets: A multivariate wavelet approach," MPRA Paper 99653, University Library of Munich, Germany.
    11. Wang, Xiao-Tian & Yan, Hai-Gang & Tang, Ming-Ming & Zhu, En-Hui, 2010. "Scaling and long-range dependence in option pricing III: A fractional version of the Merton model with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 452-458.
    12. Lv, Longjin & Xiao, Jianbin & Fan, Liangzhong & Ren, Fuyao, 2016. "Correlated continuous time random walk and option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 100-107.
    13. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    14. M. Rezaei & A. R. Yazdanian & A. Ashrafi & S. M. Mahmoudi, 2022. "Numerically Pricing Nonlinear Time-Fractional Black–Scholes Equation with Time-Dependent Parameters Under Transaction Costs," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 243-280, June.
    15. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2010. "Long memory volatility in Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1425-1433.
    16. Foad Shokrollahi, 2017. "The valuation of European option with transaction costs by mixed fractional Merton model," Papers 1702.00152, arXiv.org.
    17. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2010. "Contemporaneous aggregation and long-memory property of returns and volatility in the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4844-4854.
    18. Zhang, Xili & Xiao, Weilin, 2017. "Arbitrage with fractional Gaussian processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 620-628.
    19. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    20. Avishek Bhandari & Bandi Kamaiah, 2021. "Long Memory and Fractality Among Global Equity Markets: a Multivariate Wavelet Approach," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 23-37, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:4:p:1469-1480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.