IDEAS home Printed from https://ideas.repec.org/a/oup/beheco/v28y2017i5p1198-1205..html
   My bibliography  Save this article

Male genital titillators and the intensity of post-copulatory sexual selection across bushcrickets

Author

Listed:
  • Gerlind U.C Lehmann
  • James DJ Gilbert
  • Karim Vahed
  • Arne W Lehmann

Abstract

Lay SummaryWe examined the relationships between the complexity of male genital structures (titillators) and both the mating rate of males and females, and the number of times females mate, across a range of bushcricket species. We did not find any relationship between genital complexity and the number of times females mate. Among species with titillators, however, the complexity of these structures was associated with faster re-mating rates in females. The results therefore only partly support the hypothesis that the structure and complexity of genitalia relate to the intensity of sexual selection.

Suggested Citation

  • Gerlind U.C Lehmann & James DJ Gilbert & Karim Vahed & Arne W Lehmann, 2017. "Male genital titillators and the intensity of post-copulatory sexual selection across bushcrickets," Behavioral Ecology, International Society for Behavioral Ecology, vol. 28(5), pages 1198-1205.
  • Handle: RePEc:oup:beheco:v:28:y:2017:i:5:p:1198-1205.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/beheco/arx094
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark Pagel, 1999. "Inferring the historical patterns of biological evolution," Nature, Nature, vol. 401(6756), pages 877-884, October.
    2. Helen S. Crudgington & Mike T. Siva-Jothy, 2000. "Genital damage, kicking and early death," Nature, Nature, vol. 407(6806), pages 855-856, October.
    3. Karim Vahed, 2007. "Comparative evidence for a cost to males of manipulating females in bushcrickets," Behavioral Ecology, International Society for Behavioral Ecology, vol. 18(3), pages 499-506.
    4. Göran Arnqvist, 1998. "Comparative evidence for the evolution of genitalia by sexual selection," Nature, Nature, vol. 393(6687), pages 784-786, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodrigo S Rios & Cristian Salgado-Luarte & Ernesto Gianoli, 2014. "Species Divergence and Phylogenetic Variation of Ecophysiological Traits in Lianas and Trees," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-10, June.
    2. Aris Katzourakis & Gkikas Magiorkinis & Aaron G Lim & Sunetra Gupta & Robert Belshaw & Robert Gifford, 2014. "Larger Mammalian Body Size Leads to Lower Retroviral Activity," PLOS Pathogens, Public Library of Science, vol. 10(7), pages 1-11, July.
    3. Jonas Eberle & Renier Myburgh & Dirk Ahrens, 2014. "The Evolution of Morphospace in Phytophagous Scarab Chafers: No Competition - No Divergence?," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-16, May.
    4. Mark C Mainwaring & Jenő Nagy & Mark E Hauber, 2021. "Sex-specific contributions to nest building in birds," Behavioral Ecology, International Society for Behavioral Ecology, vol. 32(6), pages 1075-1085.
    5. Annie Bissonnette & Mathias Franz & Oliver Schülke & Julia Ostner, 2014. "Socioecology, but not cognition, predicts male coalitions across primates," Behavioral Ecology, International Society for Behavioral Ecology, vol. 25(4), pages 794-801.
    6. Elspeth Kenny & Tim R. Birkhead & Jonathan P. Green, 2017. "Allopreening in birds is associated with parental cooperation over offspring care and stable pair bonds across years," Behavioral Ecology, International Society for Behavioral Ecology, vol. 28(4), pages 1142-1148.
    7. Fernandes, Heitor B.F. & Peñaherrera-Aguirre, Mateo & Woodley of Menie, Michael A. & Figueredo, Aurelio José, 2020. "Macroevolutionary patterns and selection modes for general intelligence (G) and for commonly used neuroanatomical volume measures in primates," Intelligence, Elsevier, vol. 80(C).
    8. L. M. Diele-Viegas & R. T. Figueroa & B. Vilela & C. F. D. Rocha, 2020. "Are reptiles toast? A worldwide evaluation of Lepidosauria vulnerability to climate change," Climatic Change, Springer, vol. 159(4), pages 581-599, April.
    9. Ricarda Laumeier & Martin Brändle & Mark-Oliver Rödel & Stefan Brunzel & Roland Brandl & Stefan Pinkert, 2023. "The global importance and interplay of colour-based protective and thermoregulatory functions in frogs," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Anders Pape Møller & László Zsolt Garamszegi, 2012. "Between individual variation in risk-taking behavior and its life history consequences," Behavioral Ecology, International Society for Behavioral Ecology, vol. 23(4), pages 843-853.
    11. Brandon C. Wheeler & Clara J. Scarry & Andreas Koenig, 2013. "Rates of agonism among female primates: a cross-taxon perspective," Behavioral Ecology, International Society for Behavioral Ecology, vol. 24(6), pages 1369-1380.
    12. Aleksandar Stanojković & Svatopluk Skoupý & Hanna Johannesson & Petr Dvořák, 2024. "The global speciation continuum of the cyanobacterium Microcoleus," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Alyson F Brokaw & Michael Smotherman, 2020. "Role of ecology in shaping external nasal morphology in bats and implications for olfactory tracking," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-22, January.
    14. Jørgen S Søraker & Jonathan Wright & Fredrik Øglænd Hanslin & Michael Le Pepke, 2023. "The evolution of extra-pair paternity and paternal care in birds," Behavioral Ecology, International Society for Behavioral Ecology, vol. 34(5), pages 780-789.
    15. Cinar, Ozan & Nakagawa, Shinichi & Viechtbauer, Wolfgang, 2020. "Phylogenetic multilevel meta-analysis: A simulation study on the importance of modeling the phylogeny," EcoEvoRxiv su4zv, Center for Open Science.
    16. Vall-llosera, Miquel & Cassey, Phillip, 2017. "Physical attractiveness, constraints to the trade and handling requirements drive the variation in species availability in the Australian cagebird trade," Ecological Economics, Elsevier, vol. 131(C), pages 407-413.
    17. Woodley of Menie, Michael A. & Peñaherrera-Aguirre, Mateo & Jurgensen, JohnMichael, 2022. "Using macroevolutionary patterns to distinguish primary from secondary cognitive modules in primate cross-species performance data on five cognitive ability measures," Intelligence, Elsevier, vol. 92(C).
    18. Daniel S. Maynard & Lalasia Bialic-Murphy & Constantin M. Zohner & Colin Averill & Johan Hoogen & Haozhi Ma & Lidong Mo & Gabriel Reuben Smith & Alicia T. R. Acosta & Isabelle Aubin & Erika Berenguer , 2022. "Global relationships in tree functional traits," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Eva Maria Griebeler & Jan Werner, 2018. "Formal comment on: Myhrvold (2016) Dinosaur metabolism and the allometry of maximum growth rate. PLoS ONE; 11(11): e0163205," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-18, February.
    20. Seán Roberts & James Winters, 2013. "Linguistic Diversity and Traffic Accidents: Lessons from Statistical Studies of Cultural Traits," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:beheco:v:28:y:2017:i:5:p:1198-1205.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/beheco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.