IDEAS home Printed from https://ideas.repec.org/a/oup/beheco/v34y2023i5p780-789..html
   My bibliography  Save this article

The evolution of extra-pair paternity and paternal care in birds

Author

Listed:
  • Jørgen S Søraker
  • Jonathan Wright
  • Fredrik Øglænd Hanslin
  • Michael Le Pepke

Abstract

Extra-pair paternity (EPP) influences the relatedness between social parents and offspring. Therefore, one might expect the level of EPP to influence levels of paternal investment. Here, we investigated the effect of variation in EPP rates on male contributions to parental care within a phylogenetic framework of up to 271 primarily socially monogamous bird species representing 85 families. We used proportion of male provisioning and occurrence of male incubation and nestbuilding as measures of paternal care. We tested the relationship between EPP rates and different components of paternal care while controlling for various life-history traits, namely lifespan, clutch size, and body mass in a phylogenetic path analysis framework. EPP was significantly negatively associated with the occurrence (i.e., whether males participate or not) of male nestbuilding and incubation, but not with the relative amount (proportion) of nestbuilding or incubation performed by the male. Importantly, the proportion of provisioning and biomass delivery by males was clearly negatively associated with EPP. These analyses thus confirm that the effect of EPP on proportion of provisioning visits by males is similar to proportion of biomass delivery, an often assumed but rarely tested assumption. Analysing only Passerine species provided similar results, although only proportion of provisioning was significantly negatively associated with EPP. This study, therefore, provides the most comprehensive support to date of a negative relationship between EPP and paternal care across species. However, a causal relationship between EPP and paternal care cannot necessarily be concluded. We also identify key methodological improvements for future research within the topic.

Suggested Citation

  • Jørgen S Søraker & Jonathan Wright & Fredrik Øglænd Hanslin & Michael Le Pepke, 2023. "The evolution of extra-pair paternity and paternal care in birds," Behavioral Ecology, International Society for Behavioral Ecology, vol. 34(5), pages 780-789.
  • Handle: RePEc:oup:beheco:v:34:y:2023:i:5:p:780-789.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/beheco/arad053
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark Pagel, 1999. "Inferring the historical patterns of biological evolution," Nature, Nature, vol. 401(6756), pages 877-884, October.
    2. Nicholas M A Crouch & Roberta J Mason-Gamer, 2018. "Structural equation modeling as a tool to investigate correlates of extra-pair paternity in birds," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-14, February.
    3. W. Jetz & G. H. Thomas & J. B. Joy & K. Hartmann & A. O. Mooers, 2012. "The global diversity of birds in space and time," Nature, Nature, vol. 491(7424), pages 444-448, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elspeth Kenny & Tim R. Birkhead & Jonathan P. Green, 2017. "Allopreening in birds is associated with parental cooperation over offspring care and stable pair bonds across years," Behavioral Ecology, International Society for Behavioral Ecology, vol. 28(4), pages 1142-1148.
    2. Jonathan A. Rader & Tyson L. Hedrick, 2023. "Morphological evolution of bird wings follows a mechanical sensitivity gradient determined by the aerodynamics of flapping flight," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Vall-llosera, Miquel & Cassey, Phillip, 2017. "Physical attractiveness, constraints to the trade and handling requirements drive the variation in species availability in the Australian cagebird trade," Ecological Economics, Elsevier, vol. 131(C), pages 407-413.
    4. Cameron J Nordell & Samuel Haché & Erin M Bayne & Péter Sólymos & Kenneth R Foster & Christine M Godwin & Richard Krikun & Peter Pyle & Keith A Hobson, 2016. "Within-Site Variation in Feather Stable Hydrogen Isotope (δ2Hf) Values of Boreal Songbirds: Implications for Assignment to Molt Origin," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.
    5. Jan Smyčka & Anna Toszogyova & David Storch, 2023. "The relationship between geographic range size and rates of species diversification," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Arkadiusz Frӧhlich & Dorota Kotowska & Rafał Martyka & Matthew R. E. Symonds, 2023. "Allometry reveals trade-offs between Bergmann’s and Allen’s rules, and different avian adaptive strategies for thermoregulation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Rodrigo S Rios & Cristian Salgado-Luarte & Ernesto Gianoli, 2014. "Species Divergence and Phylogenetic Variation of Ecophysiological Traits in Lianas and Trees," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-10, June.
    8. Aris Katzourakis & Gkikas Magiorkinis & Aaron G Lim & Sunetra Gupta & Robert Belshaw & Robert Gifford, 2014. "Larger Mammalian Body Size Leads to Lower Retroviral Activity," PLOS Pathogens, Public Library of Science, vol. 10(7), pages 1-11, July.
    9. Jonas Eberle & Renier Myburgh & Dirk Ahrens, 2014. "The Evolution of Morphospace in Phytophagous Scarab Chafers: No Competition - No Divergence?," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-16, May.
    10. Tong Qiu & Robert Andrus & Marie-Claire Aravena & Davide Ascoli & Yves Bergeron & Roberta Berretti & Daniel Berveiller & Michal Bogdziewicz & Thomas Boivin & Raul Bonal & Don C. Bragg & Thomas Caignar, 2022. "Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Joshua J Medina & James M Maley & Siddharth Sannapareddy & Noah N Medina & Cyril M Gilman & John E McCormack, 2020. "A rapid and cost-effective pipeline for digitization of museum specimens with 3D photogrammetry," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-14, August.
    12. Andrew Brinkworth & Emily Green & Yimeng Li & Jack Oyston & Marcello Ruta & Matthew A. Wills, 2023. "Bird clades with less complex appendicular skeletons tend to have higher species richness," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Mark C Mainwaring & Jenő Nagy & Mark E Hauber, 2021. "Sex-specific contributions to nest building in birds," Behavioral Ecology, International Society for Behavioral Ecology, vol. 32(6), pages 1075-1085.
    14. Nathan G Swenson, 2011. "Phylogenetic Beta Diversity Metrics, Trait Evolution and Inferring the Functional Beta Diversity of Communities," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-9, June.
    15. Stephen A. Schlebusch & Jakub Rídl & Manon Poignet & Francisco J. Ruiz-Ruano & Jiří Reif & Petr Pajer & Jan Pačes & Tomáš Albrecht & Alexander Suh & Radka Reifová, 2023. "Rapid gene content turnover on the germline-restricted chromosome in songbirds," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Fabien Lafuma & Ian J. Corfe & Julien Clavel & Nicolas Di-Poï, 2021. "Multiple evolutionary origins and losses of tooth complexity in squamates," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    17. Annie Bissonnette & Mathias Franz & Oliver Schülke & Julia Ostner, 2014. "Socioecology, but not cognition, predicts male coalitions across primates," Behavioral Ecology, International Society for Behavioral Ecology, vol. 25(4), pages 794-801.
    18. Justin W. Baldwin & Joan Garcia-Porta & Carlos A. Botero, 2023. "Complementarity in Allen’s and Bergmann’s rules among birds," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Mark Pagel & Ciara O’Donovan & Andrew Meade, 2022. "General statistical model shows that macroevolutionary patterns and processes are consistent with Darwinian gradualism," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Robert P Freckleton & Paul H Harvey, 2006. "Detecting Non-Brownian Trait Evolution in Adaptive Radiations," PLOS Biology, Public Library of Science, vol. 4(11), pages 1-8, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:beheco:v:34:y:2023:i:5:p:780-789.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/beheco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.