IDEAS home Printed from https://ideas.repec.org/a/oup/beheco/v26y2015i1p223-231..html
   My bibliography  Save this article

Ants build transportation networks that optimize cost and efficiency at the expense of robustness

Author

Listed:
  • Guénaël Cabanes
  • Ellen van Wilgenburg
  • Madeleine Beekman
  • Tanya Latty

Abstract

Like modern human societies, many biological systems are dependent on transportation networks for the efficient distribution of resources and information. Network builders face the daunting challenge of optimizing conflicting network criteria such as robustness, efficiency, and cost, which cannot be optimized simultaneously. Here, we use graph and network theory to examine the trail networks of the polydomous meat ant Iridomyrmex purpureus. Meat ants build and maintain physical trails that connect their multiple nests to each other and to food resources. The resulting transportation network is used to distribute workers, brood, and food resources. We found that meat ants built low-cost trail networks that were relatively efficient. However, networks were less robust than comparable simulated networks, suggesting that meat ants prioritize cost and efficiency over robustness. Populous nests had higher connectivity than did less populous nests, implying they play a key role in resource distribution throughout the network. We propose that meat ant networks are an ideal model system for the development of network optimization heuristics.

Suggested Citation

  • Guénaël Cabanes & Ellen van Wilgenburg & Madeleine Beekman & Tanya Latty, 2015. "Ants build transportation networks that optimize cost and efficiency at the expense of robustness," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(1), pages 223-231.
  • Handle: RePEc:oup:beheco:v:26:y:2015:i:1:p:223-231.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/beheco/aru175
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    2. Perna, Andrea & Valverde, Sergi & Gautrais, Jacques & Jost, Christian & Solé, Ricard & Kuntz, Pascale & Theraulaz, Guy, 2008. "Topological efficiency in three-dimensional gallery networks of termite nests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6235-6244.
    3. Werner Risau, 1997. "Mechanisms of angiogenesis," Nature, Nature, vol. 386(6626), pages 671-674, April.
    4. J. Buhl & J. Gautrais & R. Solé & P. Kuntz & S. Valverde & J. Deneubourg & G. Theraulaz, 2004. "Efficiency and robustness in ant networks of galleries," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 42(1), pages 123-129, November.
    5. J. Buhl & J. Gautrais & N. Reeves & R. V. Solé & S. Valverde & P. Kuntz & G. Theraulaz, 2006. "Topological patterns in street networks of self-organized urban settlements," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 49(4), pages 513-522, February.
    6. Tero, Atsushi & Kobayashi, Ryo & Nakagaki, Toshiyuki, 2006. "Physarum solver: A biologically inspired method of road-network navigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(1), pages 115-119.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Viana, Matheus P. & Fourcassié, Vincent & Perna, Andrea & Costa, Luciano da F. & Jost, Christian, 2013. "Accessibility in networks: A useful measure for understanding social insect nest architecture," Chaos, Solitons & Fractals, Elsevier, vol. 46(C), pages 38-45.
    2. Sohouenou, Philippe Y.R. & Christidis, Panayotis & Christodoulou, Aris & Neves, Luis A.C. & Presti, Davide Lo, 2020. "Using a random road graph model to understand road networks robustness to link failures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 29(C).
    3. Jiang, Bin, 2007. "A topological pattern of urban street networks: Universality and peculiarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 647-655.
    4. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    5. Liang, Jinpeng & Wu, Jianjun & Gao, Ziyou & Sun, Huijun & Yang, Xin & Lo, Hong K., 2019. "Bus transit network design with uncertainties on the basis of a metro network: A two-step model framework," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 115-138.
    6. Lorenzo Barbieri & Roberto D’Autilia & Paola Marrone & Ilaria Montella, 2023. "Graph Representation of the 15-Minute City: A Comparison between Rome, London, and Paris," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    7. Zhaowei Yin & Yuanyuan Guo & Mengshu Zhou & Yixuan Wang & Fengliang Tang, 2024. "Integration between Dockless Bike-Sharing and Buses: The Effect of Urban Road Network Characteristics," Land, MDPI, vol. 13(8), pages 1-27, August.
    8. Nayan, Ashish & Wang, David Z.W., 2017. "Optimal bus transit route packaging in a privatized contracting regime," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 146-157.
    9. David Canca & Belén Navarro-Carmona & Gabriel Villa & Alejandro Zarzo, 2023. "A Multilayer Network Approach for the Bimodal Bus–Pedestrian Line Planning Problem," Mathematics, MDPI, vol. 11(19), pages 1-36, October.
    10. Ali Najmi & Taha H. Rashidi & Alireza Abbasi & S. Travis Waller, 2017. "Reviewing the transport domain: an evolutionary bibliometrics and network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 843-865, February.
    11. Wang, Jian & He, Xiaozheng & Peeta, Srinivas & Wang, Wei, 2022. "Globally convergent line search algorithm with Euler-based step size-determination method for continuous network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 119-144.
    12. Wagner, Roy, 2008. "On the metric, topological and functional structures of urban networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2120-2132.
    13. Harshad Khadilkar, 2017. "Data-Enabled Stochastic Modeling for Evaluating Schedule Robustness of Railway Networks," Transportation Science, INFORMS, vol. 51(4), pages 1161-1176, November.
    14. Zhang, Tong & Zeng, Zhe & Jia, Tao & Li, Jing, 2016. "Examining the amenability of urban street networks for locating facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 469-479.
    15. Hisi, Andreia N.S. & Guimarães, Paulo R. & de Aguiar, Marcus A.M., 2010. "The role of predator overlap in the robustness and extinction of a four species predator–prey network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4725-4733.
    16. Heng Ye & Zhiping Li & Guangyue Li & Yiran Liu, 2022. "Topology Analysis of Natural Gas Pipeline Networks Based on Complex Network Theory," Energies, MDPI, vol. 15(11), pages 1-20, May.
    17. Li, Siqiao & Zhu, Xiaoning & Shang, Pan & Wang, Li & Li, Tianqi, 2024. "Scheduling shared passenger and freight transport for an underground logistics system," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    18. Róbert Pethes & Levente Kovács, 2023. "An Exact and an Approximation Method to Compute the Degree Distribution of Inhomogeneous Random Graph Using Poisson Binomial Distribution," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
    19. Garijo, Delia & Márquez, Alberto & Rodríguez, Natalia & Silveira, Rodrigo I., 2019. "Computing optimal shortcuts for networks," European Journal of Operational Research, Elsevier, vol. 279(1), pages 26-37.
    20. Liu, Haoxiang & Wang, David Z.W., 2017. "Locating multiple types of charging facilities for battery electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 30-55.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:beheco:v:26:y:2015:i:1:p:223-231.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/beheco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.