IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52536-7.html
   My bibliography  Save this article

Concurrent oxygen evolution reaction pathways revealed by high-speed compressive Raman imaging

Author

Listed:
  • Raj Pandya

    (24 rue Lhomond
    JJ Thomson Avenue
    University of Warwick)

  • Florian Dorchies

    (Collège de France
    Réseau sur le stockage Electrochimique de l’Energie (RS2E))

  • Davide Romanin

    (UMR7588
    Centre de Nanosciences et de Nanotechnologies)

  • Jean-François Lemineur

    (15 rue Jean-Antoine de Baïf)

  • Frédéric Kanoufi

    (15 rue Jean-Antoine de Baïf)

  • Sylvain Gigan

    (24 rue Lhomond)

  • Alex W. Chin

    (UMR7588)

  • Hilton B. Aguiar

    (24 rue Lhomond)

  • Alexis Grimaud

    (Collège de France
    Réseau sur le stockage Electrochimique de l’Energie (RS2E)
    Merkert Chemistry Center)

Abstract

Transition metal oxides are state-of-the-art materials for catalysing the oxygen evolution reaction (OER), whose slow kinetics currently limit the efficiency of water electrolysis. However, microscale physicochemical heterogeneity between particles, dynamic reactions both in the bulk and at the surface, and an interplay between particle reactivity and electrolyte makes probing the OER challenging. Here, we overcome these limitations by applying state-of-the-art compressive Raman imaging to uncover concurrent bias-dependent pathways for the OER in a dense, crystalline electrocatalyst, α-Li2IrO3. By spatially and temporally tracking changes in stretching modes we follow catalytic activation and charge accumulation following ion exchange under various electrolytes and cycling conditions, comparing our observations with other crystalline catalysts (IrO2, LiCoO2). We demonstrate that at low overpotentials the reaction between water and the oxidized catalyst surface is compensated by bulk ion exchange, as usually only found for amorphous, electrolyte permeable, catalysts. At high overpotentials the charge is compensated by surface redox active sites, as in other crystalline catalysts such as IrO2. Hence, our work reveals charge compensation can extend beyond the surface in crystalline catalysts. More generally, the results highlight the power of compressive Raman imaging for chemically specific tracking of microscale reaction dynamics in catalysts, battery materials, or memristors.

Suggested Citation

  • Raj Pandya & Florian Dorchies & Davide Romanin & Jean-François Lemineur & Frédéric Kanoufi & Sylvain Gigan & Alex W. Chin & Hilton B. Aguiar & Alexis Grimaud, 2024. "Concurrent oxygen evolution reaction pathways revealed by high-speed compressive Raman imaging," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52536-7
    DOI: 10.1038/s41467-024-52536-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52536-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52536-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shuangyan Lang & Seung-Ho Yu & Xinran Feng & Mihail R. Krumov & Héctor D. Abruña, 2022. "Understanding the lithium–sulfur battery redox reactions via operando confocal Raman microscopy," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Hong Nhan Nong & Lorenz J. Falling & Arno Bergmann & Malte Klingenhof & Hoang Phi Tran & Camillo Spöri & Rik Mom & Janis Timoshenko & Guido Zichittella & Axel Knop-Gericke & Simone Piccinin & Javier P, 2020. "Key role of chemistry versus bias in electrocatalytic oxygen evolution," Nature, Nature, vol. 587(7834), pages 408-413, November.
    3. Alice J. Merryweather & Christoph Schnedermann & Quentin Jacquet & Clare P. Grey & Akshay Rao, 2021. "Operando optical tracking of single-particle ion dynamics in batteries," Nature, Nature, vol. 594(7864), pages 522-528, June.
    4. J. Tyler Mefford & Andrew R. Akbashev & Minkyung Kang & Cameron L. Bentley & William E. Gent & Haitao D. Deng & Daan Hein Alsem & Young-Sang Yu & Norman J. Salmon & David A. Shapiro & Patrick R. Unwin, 2021. "Correlative operando microscopy of oxygen evolution electrocatalysts," Nature, Nature, vol. 593(7857), pages 67-73, May.
    5. Jian Feng Li & Yi Fan Huang & Yong Ding & Zhi Lin Yang & Song Bo Li & Xiao Shun Zhou & Feng Ru Fan & Wei Zhang & Zhi You Zhou & De Yin Wu & Bin Ren & Zhong Lin Wang & Zhong Qun Tian, 2010. "Shell-isolated nanoparticle-enhanced Raman spectroscopy," Nature, Nature, vol. 464(7287), pages 392-395, March.
    6. J. Tyler Mefford & Xi Rong & Artem M. Abakumov & William G. Hardin & Sheng Dai & Alexie M. Kolpak & Keith P. Johnston & Keith J. Stevenson, 2016. "Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts," Nature Communications, Nature, vol. 7(1), pages 1-11, April.
    7. Chunzhen Yang & Gwenaëlle Rousse & Katrine Louise Svane & Paul E. Pearce & Artem M. Abakumov & Michael Deschamps & Giannantonio Cibin & Alan V. Chadwick & Daniel Alves Dalla Corte & Heine Anton Hansen, 2020. "Cation insertion to break the activity/stability relationship for highly active oxygen evolution reaction catalyst," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    8. Qian Cheng & Lu Wei & Zhe Liu & Nan Ni & Zhe Sang & Bin Zhu & Weiheng Xu & Meijie Chen & Yupeng Miao & Long-Qing Chen & Wei Min & Yuan Yang, 2018. "Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    9. Hua Zhang & Chen Wang & Han-Lei Sun & Gang Fu & Shu Chen & Yue-Jiao Zhang & Bing-Hui Chen & Jason R. Anema & Zhi-Lin Yang & Jian-Feng Li & Zhong-Qun Tian, 2017. "In situ dynamic tracking of heterogeneous nanocatalytic processes by shell-isolated nanoparticle-enhanced Raman spectroscopy," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felix T. Haase & Arno Bergmann & Travis E. Jones & Janis Timoshenko & Antonia Herzog & Hyo Sang Jeon & Clara Rettenmaier & Beatriz Roldan Cuenya, 2022. "Size effects and active state formation of cobalt oxide nanoparticles during the oxygen evolution reaction," Nature Energy, Nature, vol. 7(8), pages 765-773, August.
    2. Xin Zhang & Haoyin Zhong & Qi Zhang & Qihan Zhang & Chao Wu & Junchen Yu & Yifan Ma & Hang An & Hao Wang & Yiming Zou & Caozheng Diao & Jingsheng Chen & Zhi Gen Yu & Shibo Xi & Xiaopeng Wang & Junmin , 2024. "High-spin Co3+ in cobalt oxyhydroxide for efficient water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Ben Niu & Wenxuan Jiang & Bo Jiang & Mengqi Lv & Sa Wang & Wei Wang, 2022. "Determining the depth of surface charging layer of single Prussian blue nanoparticles with pseudocapacitive behaviors," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Zeyu Wang & William A. Goddard & Hai Xiao, 2023. "Potential-dependent transition of reaction mechanisms for oxygen evolution on layered double hydroxides," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Xueyan Chen & Qianqian Ding & Chao Bi & Jian Ruan & Shikuan Yang, 2022. "Lossless enrichment of trace analytes in levitating droplets for multiphase and multiplex detection," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Haoyin Zhong & Qi Zhang & Junchen Yu & Xin Zhang & Chao Wu & Hang An & Yifan Ma & Hao Wang & Jun Zhang & Yong-Wei Zhang & Caozheng Diao & Zhi Gen Yu & Shibo Xi & Xiaopeng Wang & Junmin Xue, 2023. "Key role of eg* band broadening in nickel-based oxyhydroxides on coupled oxygen evolution mechanism," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Zhenhua Li & Xiaofan Li & Hua Zhou & Yan Xu & Si-Min Xu & Yue Ren & Yifan Yan & Jiangrong Yang & Kaiyue Ji & Li Li & Ming Xu & Mingfei Shao & Xianggui Kong & Xiaoming Sun & Haohong Duan, 2022. "Electrocatalytic synthesis of adipic acid coupled with H2 production enhanced by a ligand modification strategy," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Zhi Chang & Huijun Yang & Anqiang Pan & Ping He & Haoshen Zhou, 2022. "An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Pin Wang & Mengfan Xue & Dongjian Jiang & Yanliang Yang & Junzhe Zhang & Hongzheng Dong & Gengzhi Sun & Yingfang Yao & Wenjun Luo & Zhigang Zou, 2022. "Photovoltage memory effect in a portable Faradaic junction solar rechargeable device," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Xiao-Ting Yin & En-Ming You & Ru-Yu Zhou & Li-Hong Zhu & Wei-Wei Wang & Kai-Xuan Li & De-Yin Wu & Yu Gu & Jian-Feng Li & Bing-Wei Mao & Jia-Wei Yan, 2024. "Unraveling the energy storage mechanism in graphene-based nonaqueous electrochemical capacitors by gap-enhanced Raman spectroscopy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Yue Chen & Wenkai Wu & Sergio Gonzalez-Munoz & Leonardo Forcieri & Charlie Wells & Samuel P. Jarvis & Fangling Wu & Robert Young & Avishek Dey & Mark Isaacs & Mangayarkarasi Nagarathinam & Robert G. P, 2023. "Nanoarchitecture factors of solid electrolyte interphase formation via 3D nano-rheology microscopy and surface force-distance spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Ermanno Miele & Wesley M. Dose & Ilya Manyakin & Michael H. Frosz & Zachary Ruff & Michael F. L. Volder & Clare P. Grey & Jeremy J. Baumberg & Tijmen G. Euser, 2022. "Hollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Chuanlai Liu & Franz Roters & Dierk Raabe, 2024. "Role of grain-level chemo-mechanics in composite cathode degradation of solid-state lithium batteries," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    15. Sheng Zhao & Sung-Fu Hung & Liming Deng & Wen-Jing Zeng & Tian Xiao & Shaoxiong Li & Chun-Han Kuo & Han-Yi Chen & Feng Hu & Shengjie Peng, 2024. "Constructing regulable supports via non-stoichiometric engineering to stabilize ruthenium nanoparticles for enhanced pH-universal water splitting," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Zuyun He & Jinwoo Hwang & Zhiheng Gong & Mengzhen Zhou & Nian Zhang & Xiongwu Kang & Jeong Woo Han & Yan Chen, 2022. "Promoting biomass electrooxidation via modulating proton and oxygen anion deintercalation in hydroxide," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Pengcheng Ye & Keqing Fang & Haiyan Wang & Yahao Wang & Hao Huang & Chenbin Mo & Jiqiang Ning & Yong Hu, 2024. "Lattice oxygen activation and local electric field enhancement by co-doping Fe and F in CoO nanoneedle arrays for industrial electrocatalytic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Kui Fan & Wenfu Xie & Jinze Li & Yining Sun & Pengcheng Xu & Yang Tang & Zhenhua Li & Mingfei Shao, 2022. "Active hydrogen boosts electrochemical nitrate reduction to ammonia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. Chao-Yu Li & Ming Chen & Shuai Liu & Xinyao Lu & Jinhui Meng & Jiawei Yan & Héctor D. Abruña & Guang Feng & Tianquan Lian, 2022. "Unconventional interfacial water structure of highly concentrated aqueous electrolytes at negative electrode polarizations," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Hua Zhou & Yue Ren & Bingxin Yao & Zhenhua Li & Ming Xu & Lina Ma & Xianggui Kong & Lirong Zheng & Mingfei Shao & Haohong Duan, 2023. "Scalable electrosynthesis of commodity chemicals from biomass by suppressing non-Faradaic transformations," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52536-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.